Thermal-structural coupling analysis of beam screen in super proton-proton collider

Author:

Fan Jia-Kun,Wang Jie,Gao Yong,You Zhi-Ming,Wang Sheng,Zhang Jing,Hu Yao-Cheng,Xu Zhang-Lian,Wang Bin, ,

Abstract

High-energy colliders play an indispensable role in particle physics and high-energy physics. Beam screen is one of the key parts in the high-energy collider. It is used to transfer the heat generated by the beam in the pipeline to a cooling system, and absorb the residual gas to the cold bore through the pumping holes on the wall of the beam screen to ensure the vacuum stability at the same time. However, in the process of transferring thermal load, the deformation caused by temperature change will affect the structural stability of the beam screen. How to reduce the deformation as much as possible while ensuring the good heat transfer performance of the beam screen is one of the key issues in optimizing the structural design of the beam screen. In this paper, the heat transfer performance and mechanical property of the beam screen model are simulated and optimized based on the ANSYS simulation results to ensure the normal and stable operation of the beam in the super proton-proton collider. For the inner surface of the outer screen of the beam screen, the method of reducing the thickness of the copper coating is used to reduce the Lorentz force generated during operation. The calculation results from the relevant theoretical models show that when the thickness of the copper coating varies from 0 to 100 μm, the copper coating with a thickness of 75 μm can reduce the maximum deformation of the outer screen of the beam screen by 70.9%, while the maximum temperature of the beam screen can be increased by 1.1%. For the inner screen of the beam screen, a design scheme in which supporting ribs are arranged at intervals is used to reinforce the structure and improve the overall structural stability of the beam screen. The calculation results show that the maximum deformation of the inner screen of the beam screen can be reduced by 86.8% and the maximum temperature of the beam screen is reduced by 7.69%, compared with the case without supporting fins, when the interval between two adjacent supporting fins is 1 pumping hole. The research results provide important theoretical reference for the design of beam screen, which is the key component of the vacuum system of the new-generation high energy particle accelerator.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B. 716 1

2. Vien V V 2020 J. Phys. G: Nucl. Part. Phys. 47 055007

3. Alexander S, McDonough E, Pullen A, Shapiro B 2020 J. Cosmol. Astropart. Phys. 1 032

4. Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, Dragicevic M, Ero J, Del Valle A, Flechl M 2020 Eur. Phys. J. C 80 1

5. Group CEPC Study 2018 arXiv: 1809.00285 [ap−ph]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3