Collective dynamics of higher-order coupled phase oscillators

Author:

Cai Zong-Kai,Xu Can,Zheng Zhi-Gang, ,

Abstract

The Kuramoto model consisting of large ensembles of coupled phase oscillators serves as an illustrative paradigm for studying the synchronization transitions and collective behaviors in various self-sustained systems. In recent years, the research of the high-order coupled phase oscillators has attracted extensive interest for the high-order coupled structure playing an essential role in modeling the dynamics of code and data storage. By studying the effects of high-order coupling, we extend the Kuramoto model of high-order structure by considering the correlations between frequency and coupling, which reflects the intrinsic properties of heterogeneity of interactions between oscillators. Several novel dynamic phenomena occur in the model, including clustering, extensive multistability, explosive synchronization and oscillatory state. The universal form of the critical coupling strength characterizing the transition from disorder to order is obtained via an analysis of the stability of the incoherent state. Furthermore, we present the self-consistent approach and find the multi-cluster with their expressions of order parameters. The stability analysis of multi-cluster is performed in the subspace getting stability condition together with the stable solutions of order parameters. The discussion of all the results summarizes the mechanism of the transition from hysteresis to oscillatory states. In addition, we emphasize that the combination of the Kuramoto order parameter capturing the asymmetry of the system and the Daido order parameter representing the clustering can give a complete description of the macroscopic dynamics of the system. The research of this paper can improve the understanding of the effects of the heterogeneity among populations and the explosive synchronization occurring in higher-order coupled phase oscillators.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3