Influence of spherical aberration on beam quality of high-power laser beams propagating upwards in the atmosphere

Author:

Huang Zi-Yue,Deng Yu,Ji Xiao-Ling,

Abstract

For laser ablation propulsion’s applications in space (e.g., space-debris removal, etc.), the laser power is well above the critical power for self-focusing in the atmosphere. Therefore, the self-focusing effect on the beam quality is very significant. In addition, a high-power laser beam is usually accompanied with spherical aberration due to nonlinear effects in its generation process. In this paper, the influence of spherical aberration on the beam quality of high-power laser beams propagating upwards in the atmosphere is studied by using numerical simulation. It is shown that for the large beam size case, the target intensity may be improved by applying the positive spherical aberration. However, for the small beam size case, the target intensity may be improved by using the negative spherical aberration. Furthermore, a laser beam with a large size is more suitable for laser ablation propulsion’s applications in space than that with a small size. Owing to the linear diffraction effect and the nonlinear self-focusing effect, there exists optimal beam power to maximize the target intensity. The formula of the optimal beam power is fitted for the large beam size case in this paper. On the other hand, the focal shift appears due to diffraction, self-focusing and spherical aberration, which results in a degradation of the beam quality on the target. For the large beam size case, to move the actual focus to the target and improve the beam quality on the target, the formula of the modified focal length is also derived in this paper. The results obtained in this paper are of important theoretical significance and practical value.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3