Frequency doubling of acousto-optic Q-switched Nd:YVO4 cascaded Raman laser for narrow pulse-width 657 nm laser

Author:

Duan Yan-Min,Zhou Yu-Ming,Sun Ying-Lu,Li Zhi-Hong,Zhang Yao-Ju,Wang Hong-Yan,Zhu Hai-Yong, , ,

Abstract

Frequency doubling of second-Stokes in an acousto-optic Q-switched Nd:YVO<sub>4</sub> cascaded self-Raman cavity is demonstrated to achieve a narrow pulse-width red laser. A three-stage bonded YVO<sub>4</sub>/Nd:YVO<sub>4</sub>/YVO<sub>4</sub> crystal is designed by comprehensively considering the improvement of thermal effect, the performance of fundamental frequency laser and Raman conversion, to improve the Raman efficiency and output power. An LBO crystal cut for critical phase matching at room temperature is selected and used as a nonlinear optical crystal for realizing the frequency doubling of second- Stokes wave. Its phase matching angle (<i>θ</i> = 86.0°, <i>φ</i> = 0°) is very close to the non-critical phase matching angle and has a small walk-off angle, which is beneficial to the realizing of the high conversion efficiency of frequency doubling. In the experiment, the beam waist position of the pump light and the repetition frequency of the acousto-optic Q-switcher are optimized. Under an incident pump power of 14.2 W and a repetition frequency of 60 kHz, the highest average output power of 1.63 W and conversion efficiency of 11.5% are obtained for the 657 nm red laser emission. The pulse width of 657 nm red light is 11.5 ns at the maximum output power, which is much narrower than that generated by frequency doubling of ordinary neodymium-doped laser at a waveband of 1.3 μm. The result shows that the frequency doubling of the acousto-optic Q-switched Nd:YVO<sub>4</sub> cascaded self-Ramanlaser can take advantage of the pulse-width compression characteristics of Raman process to achieve a narrower pulse-width red light laser output.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3