Theoretical analysis and experimental verification of scintillator luminescence nonlinearity based on carrier quenching model

Author:

Wei Kun,Hei Dong-Wei,Liu Jun,Xu Qing,Weng Xiu-Feng,Tan Xin-Jian, ,

Abstract

<sec>The scintillator detector is one of the most important detectors in the field of radiation detection and radiation physics. The characteristics and performance of scintillator that is a core part of the measurement system, are widely studied. Especially, the nonlinearity of scintillators under high excitation density has received more attention because of its direct influence on the measurement results. In this paper, physical modeling and experimental research on this problem are carried out in-depth.</sec><sec>First, the second-order quenching effect of excitons on the scintillator luminescence process is quantitatively analyzed based on the carrier dynamic equation. The luminescence attenuation curves of scintillator under different initial carrier concentrations generated by different excitation densities are obtained. The relationship of the light yield and the efficiency of scintillator with the initial carrier concentration is analyzed, and the results show that with the increase of the initial carrier concentration, the light yield tends to be saturated and the light efficiency decreases. Then CeF<sub>3</sub> scintillator is studied in the Z-scan photoluminescence experiment. The relationship between the light yield and the excitation density is obtained, and the experimental data can be fitted by the carrier quenching model well, which verifies the physical model. At the same time, the energy density threshold corresponding to the 10% nonlinearity of CeF<sub>3</sub> scintillator is obtained.The physical model established in this paper can be used to predict and explain the nonlinear luminescence of various scintillation materials according to different parameters of crystal materials, which is important to understand and solve the nonlinearity problem of scintillators under high excitation density in practical application of radiation detection.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3