Breakup process of liquid jet in gas film

Author:

Zhang Bin,Cheng Peng,Li Qing-Lian,Chen Hui-Yuan,Li Chen-Yang,

Abstract

In order to study the breakup process of liquid jet in gas film, the backlit photography technique and the VOF TO DPM method are used for experimental and simulation research respectively. Water and air are used as simulant media. Grid adaptive technology is used to refine the gas-liquid interface grid and improve the capture accuracy of the gas-liquid interface. The results show that there are two main breakup processes of liquid jet in gas film: column breakup and surface breakup. The local high-pressure zone in front of the liquid jet makes the jet have a large normal velocity gradient, which causes R-T instability. The surface wave that is generated by the R-T instability is mainly responsible for the liquid column breakup. When the thin liquid film reaches a column breakup point, the airflow penetrating the trough of the surface wave causes the jet column to break. The tangential velocity gradient is generated when the gas film bypasses the liquid jet surface, which causes K-H instability. The K-H surface waves cause ligaments and droplets to strip from the surface of the liquid jet. The local momentum ratio has an important influence on the breakup process of the liquid jet in gas film. When the local momentum ratio is low, the breakup of liquid jet is dominated by the K-H instability. As the local momentum ratio increases, the breakup of liquid jet is gradually dominated by R-T instability. The local momentum ratio plays an important role in the distribution range of the liquid jet in gas film. When the local momentum ratio is low, the ligaments and droplets caused by the liquid jet are mainly distributed within the range of gas film. As the local momentum ratio increases, part of the ligaments and droplets escape from the range of the gas film. The liquid jet penetrates the gas film when the local momentum ratio is greater than 0.74. The breakup length and the penetration depth are both affected by the local momentum ratio. The breakup length increases with the local momentum ratio increasing. The penetration depth also increases with the local momentum ratio, and the penetration depth increases significantly when the liquid jet penetrates the gas film.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference43 articles.

1. Yue C G, Li J X, Hou X, Feng X P, Yang S J 2009 Sci. Sin.: Tech. 39 464
岳春国, 李进贤, 侯晓, 冯喜平, 杨姝君 2009 中国科学: 技术科学 39 464

2. Zhang X S 2017 Satell. Network 6 40
张雪松 2017 卫星与网络 6 40

3. Heister S D 2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science Business Media) pp647−655

4. Son M, Radhakrishnan K, Yoon Y, Koo J 2017 Acta Astronaut. 135 139

5. Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 p2000

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3