Nanoscale electromagnetic boundary conditions based on Maxwell’s equations

Author:

Lai Yu-Cheng,Chen Su-Qi,Mou Lan-Ya,Wang Zhao-Na,

Abstract

The electromagnetic boundary conditions have great important applications in many physical branchs. Here, the nanoscale electromagnetic boundary conditions are derived by using the integral Maxwell’s equations through constructing the dielectric transition layer across the interface between the two materials. The two interface response functions are obtained to reflect the electromagnetic field response characteristics of the interface. Based on the Maxwell’s equations, the physical meanings of the interface response functions are given as the position of the equivalent interfacial polarization charge and the gradient position of interfacial polarization current density, respectively. The influence of the dielectric constant of the medium, the transition line shape of the electric field and the frequency on the interface response functions are analyzed. When the material scale is large, the interface response function can be ignored, and the nanoscale electromagnetic boundary conditions degenerate to the classical boundary conditions given by the abrupt junction. On this basis, the interface electric dipole moment, the equivalent interfacial polarization charge area density, the equivalent interfacial polarization current density and the equivalent interfacial magnetic current density are introduced, leading to three forms of nanoscale electromagnetic boundary conditions. The results provide a clear physical picture and necessary theoretical basis for nanoscale electromagnetism and interface optics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference13 articles.

1. Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Expanded Eidition) (Cambridge: Cambridge University Press)

2. Guo S H 2008 Electrodynamics (3rd Ed.) (Beijing: Higher Education Press) pp24−28 (in Chinese)
郭硕鸿 2008 电动力学 (第三版) (北京: 高等教育出版社) 第24−28页

3. Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127

4. Christensen T, Yan W, Jauho A-P, Soljacic M, Mortensen N A 2017 Phys. Rev. Lett. 118 157402

5. Ciraci C, Hill R T, Mock J J, Urzhumov Y, Fernandez-Dominguez A I, Maier S A, Pendry J B, Chilkoti A, Smith D R 2012 Science 337 1072

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3