Nonequilibrium states in quantum materials under time-period driving

Author:

Wang En,Dong Wen-Han,Zhou Hui,Liu Meng,Ji Hong-Yan,Meng Sheng,Sun Jia-Tao, , ,

Abstract

The topology of quantum materials is the frontier research in condensed matter physics. In contrast with the conventional classification of materials by using the local symmetry breaking criterion, the states of quantum systems are classified according to the topology of wave functions. The potential applications of topological states may lead the traditional microelectronics to break through and accelerate the significant improvement in topological electronics. Most of the recent studies focus on the topological states of quantum systems under equilibrium conditions without external perturbations. The topological states of quantum systems far from the equilibrium under time-periodic driving have attracted wide attention. Here we first introduce the framework of Floquet engineering under the frame of the Floquet theorem. The nonequilibrium topological states of massless and massive Dirac fermions are discussed including the mechanism of phase transition. Light field driven electronic transition term in the quantum material gains extra time-dependent phase. Thereby the manipulation of effective transition term of the electron is realized to regulate the non-equilibrium topological states. We also mention how the photoinduced coherent phonon affects the nonequilibrium topological states of quantum systems from the perspective of atom manufacturing. Furthermore, research outlook on the nonequilibrium topological states is given. This review provides some clues to the design of physical properties and transport behaviors of quantum materials out of equilibrium.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3