Author:
Yang Chu-Ping,Geng Yi-Nan,Wang Jie,Liu Xing-Nan,Shi Zhen-Gang,
Abstract
In this paper, a helium discharge model under high pressure is established. To qualitatively verify the validity of the model, we compare the results obtained from the previous experiments with those acquired from our model under similar operational conditions. In the simulation model, the electron temperature is obtained according to its relationship with the local electric field. According to the principle of electrical neutrality, the number density of He <sup>+</sup> and the number density of <inline-formula> <tex-math id="Z-20210629213600">\begin{document}${\rm{He}}_2^+$\end{document}</tex-math> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_Z-20210629213600.jpg"/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_Z-20210629213600.png"/> </alternatives> </inline-formula> are also equal to the initial electron density, and we can assume that the He <sup>+</sup> and the <inline-formula> <tex-math id="Z-20210629213630">\begin{document}${\rm{He}}_2^+$\end{document}</tex-math> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_Z-20210629213630.jpg"/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_Z-20210629213630.png"/> </alternatives> </inline-formula> account for 30% and 70%, respectively. For helium and copper electrodes, the secondary electron emission coefficient is 0.19 and the secondary electron average energy is15.3 eV. The Fowler-Nordheim equation is used to calculate the field-emission current density, and the electron flux is calculated according to the “charge conservation condition”. The electron flux is added to COMSOL's corresponding wall boundary, which can play the role of field emission. Finally, the analysis is carried out at a macro level (breakdown voltage) and micro level (spatial electron density). It is found that the field-emission current density is determined by the electric field intensity, the field enhancement factor, and the metal escaping work. The effect of field emission can be ignored when <inline-formula> <tex-math id="M4">\begin{document}$\beta = 300$\end{document}</tex-math> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M4.jpg"/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M4.png"/> </alternatives> </inline-formula>. However, if <inline-formula> <tex-math id="M5">\begin{document}$\beta = 400$\end{document}</tex-math> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M5.jpg"/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M5.png"/> </alternatives> </inline-formula>, the influence of field emission on the breakdown is significant when the electric field intensity is above <inline-formula> <tex-math id="M6">\begin{document}$10\;{\rm{ MV}}/{\rm{m}}$\end{document}</tex-math> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M6.jpg"/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M6.png"/> </alternatives> </inline-formula>. For the breakdown of helium gas with copper serving as a parallel plate electrode, the effect of field emission can be ignored when the electric field intensity is lower than <inline-formula> <tex-math id="M7">\begin{document}$8\;{\rm{ MV}}/{\rm{m}}$\end{document}</tex-math> <alternatives> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M7.jpg"/> <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210086_M7.png"/> </alternatives> </inline-formula>. At a micro level, the field emission can provide new "seed electrons" for the discharge space, which can increase the electron density of the whole space and intensify the particle collision reaction, finally leading to the breakdown.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference21 articles.
1. Zheng Y H, Shi L 2010
Atom. Energ. Sci. Technol.
44 s253
郑艳华, 石磊 2010 原子能科学技术
44 s253
2. Yue S, Liu X N, Shi Z G 2015
Acta Phys. Sin.
64 105101
岳珊, 刘兴男, 时振刚 2015 物理学报
64 105101
3. Yang J J 1983 Gas Discharge (Beijing: Science Press) p53 (in Chinese)
杨津基 1983 气体放电 (北京: 科学出版社)第53页
4. Little R P, Whitney W T 1963
J. Appl. Phys.
34 2430
5. Zhang X B, Su J C, Sun X, Zhao L, Li R 2015
Mod. Appl. Phys.
6 43
张喜波, 苏建仓, 孙旭, 赵亮, 李锐 2015 现代应用物理
6 43
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献