Interplay between Majorana fermion and impurity in thermal-driven transport model

Author:

Niu Peng-Bin,Luo Hong-Gang, ,

Abstract

In quantum transport, especially in spintronics, its central theme is to manipulate spin degrees of freedom in solid-state systems, to understand the interaction between the particle spin and its solid-state environments and to make useful devices. Recently, Majorana fermion has been introduced into quantum transport and received much attention. In this paper, we study a thermal-driven transport model which consists of a quantum dot coupled with two normal metal leads, a impurity spin (whose angular quantum number is more than or equal to one-half) and a Majorana fermion. We focus on the interplay between Majorana fermion and the impurity in this exactly solvable model. It is found that the system can generate thermal-induced spin current, and the currents are affected by Majorana fermion and impurity. With large temperature difference, the currents are sensitive to gate voltage, and the quantitative relation between spin-up current and gate voltage tends to be linear when the coupling between Majorana and quantum dot is strong, showing Majorana fermion's robustness. In addition, the spin current induced by Majorana fermion exhibits an oscillating antisymmetric structure around zero-bias point. This spin current’s zero point is related to the angular quantum number of impurity spin. These results are expected to be useful in thermal-electric conversion devices, and may be observed in future experiments.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3