Theoretical investigation into spectrum of \begin{document}${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$\end{document} transition for CaH molecule toward laser cooling

Author:

Yin Jun-Hao,Yang Tao,Yin Jian-Ping,

Abstract

Laser cooling and trapping of neutral molecules has made substantial progress in the past few years. On one hand, molecules have more complex energy level structures than atoms, thus bringing great challenges to direct laser cooling and trapping; on the other hand, cold molecules show great advantages in cold molecular collisions and cold chemistry, as well as the applications in many-body interactions and fundamental physics such as searching for fundamental symmetry violations. In recent years, polar diatomic molecules such as SrF, YO, and CaF have been demonstrated experimentally in direct laser cooling techniques and magneto-optic traps (MOTs), all of which require a comprehensive understanding of their molecular internal level structures. Other suitable candidates have also been proposed, such as YbF, MgF, BaF, HgF or even SrOH and YbOH, some of which are already found to play important roles in searching for variations of fundamental constants and the measurement of the electron’s Electric Dipole Moment (<i>e</i>EDM). As early as 2004, the CaH molecule was selected as a good candidate for laser cooling and magneto-optical trapping. In this article, we first theoretically investigate the Franck−Condon factors of CaH in the <inline-formula><tex-math id="M233">\begin{document}${{\rm{A}}}^{2}\Pi _{1/2}\leftarrow {{\rm{X}}}^{2}\Sigma _{1/2}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M233.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M233.png"/></alternatives></inline-formula> transition by the Morse potential method, the closed-form approximation method and the Rydberg-Klein-Rees method separately, and prove that Franck−Condon factor matrix between <inline-formula><tex-math id="M234">\begin{document}$ {\mathrm{X}}^{2}\Sigma _{1/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M234.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M234.png"/></alternatives></inline-formula> state and <inline-formula><tex-math id="M235">\begin{document}$ {\mathrm{A}}^{2}\Pi _{1/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M235.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M235.png"/></alternatives></inline-formula>state is highly diagonalized, and indicate that sum of <i>f</i><sub>00</sub>, <i>f</i><sub>01</sub> and <i>f</i><sub>02</sub> for each molecule is greater than 0.9999 and almost 1 × 10<sup>4</sup> photons can be scattered to slow the molecules with merely three lasers. The molecular hyperfine structures of <inline-formula><tex-math id="M236">\begin{document}$ {X}^{2}\Sigma _{1/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M236.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M236.png"/></alternatives></inline-formula>, as well as the transitions and associated hyperfine branching ratios in the <inline-formula><tex-math id="M237">\begin{document}${{\rm{A}}}^{2}\Pi _{1/2}\left(J=1/2, \mathrm{ }+\right)\leftarrow {{\rm{X}}}^{2}\Sigma _{1/2}\left(N=1, \mathrm{ }-\right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M237.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M237.png"/></alternatives></inline-formula> transition of CaH, are examined via the effective Hamiltonian approach. According to these results, in order to fully cover the hyperfine manifold originating from <inline-formula><tex-math id="M238">\begin{document}$ |X, \mathrm{ }N=1, -\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M238.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M238.png"/></alternatives></inline-formula>, we propose the sideband modulation scheme that at least two electro-optic modulators (EOMs) should be required for CaH when detuning within 3<i>Γ</i> of the respective hyperfine transition. In the end, we analyze the Zeeman structures and magnetic <i>g</i> factors with and without <i>J</i> mixing of the <inline-formula><tex-math id="M239">\begin{document}$ |X, \mathrm{ }N=1, -\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M239.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210522_M239.png"/></alternatives></inline-formula> state to undercover more information about the magneto-optical trapping. Our work here not only demonstrates the feasibility of laser cooling and trapping of CaH, but also illuminates the studies related to spectral analysis in astrophysics, ultracold molecular collisions and fundamental physics such as exploring the fundamental symmetry violations.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3