Novel method of improving beam quality of thin-wall tube laser based on right-angle cone deformable mirror

Author:

He Ting,Tian Bo-Yu,Qiu Die,Zhang Bin,

Abstract

Aiming at improving the beam quality of thin-wall tube laser, a novel method based on the right-angle cone deformable mirror is proposed. In the method, a reflector with inner right-angle conical surface is used, and the annular laser beam successively passes through the opposite sides of the tube, compensating for the off-axis aberrations of the annular laser beam. Next, the residual aberrations are corrected by the deformation of the right-angle cone mirror to further improve the beam quality. The physical model of the right-angle cone deformable mirror is built up by using the finite element analysis method, followed by optimizing the structural parameters of the right-angle cone deformable mirror. The preliminarily optimized right-angle cone deformable mirror drived by 48 actuators with a radius of 1.5 mm for each actuator and an interval of 11 mm between actuators is then utilized to correct the beam quality of the thin-wall tube laser. Results indicate that the output beam quality of the thin-wall tube laser degrades rapidly with the increasing of the tube’s concentricity error, parallelism error, taper error and source’s parallelism error. Fortunately, the beam quality is significantly improved by using the right-angle cone deformable mirror and the <i>β</i> factor greatly decreases. In addition, the performance of the non-ideal right-angle cone deformable mirror with a 20-μrad taper error and a 10-mrad collimation error is compared with that of the ideal mirror, and the results show that the <i>β</i> factor is controlled within 1.14 after having been corrected by the non-ideal right-angle cone deformable mirror. Therefore, the simulation results theoretically prove that the novel method can effectively eliminate the typical aberrations caused by the errors from fabrication and alignment and correct the wavefront distortion of the large-aperture thin-wall tube laser, thus significantly improving the beam quality.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3