Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed

Author:

Ma Xiao-Ping,Yang Hong-Guo,Li Chang-Feng,Liu You-Ji,Piao Hong-Guang,

Abstract

In a nanodisk made of soft ferromagnet, the magnetic vortex structure are highly stabilized, and the circulation directions of the vortices are naturally binary (either clockwise (CW) or counter-clockwise (CCW)), which can be associated with one bit of information, and thus the magnetic vortices have been of great interest recently. A vortex-circulation-based memory requires the perfect controllability of the circulation direction. From the circulation point of view, there are four possible ground states in a nanodisk pair: (CCW, CCW), (CCW, CW), (CW, CCW) and (CW, CW). In a perfect circular nanodisk, CW and CCW states are degenerate because of the high symmetry of the system. However, the circulation of the magnetic vortex is known to be controlled by introducing the asymmetry. It has been reported that the magnetic vortices with opposite (the same) circulations are realized in one-side-flat disk pair. That means in one-side-flat nanodisk pair only the control of two of these four ground states is possible, eg., (CCW, CW), (CW, CCW) or (CCW, CCW), (CW, CW). We found that the reversal of the magnetic vortex circulation is affected by the nanodisk thickness as well. By further introducing another asymmetry, different thickness, the control of the four circulation ground states is achieved in a nanodisk pair. In this work, the controllability of the four ground states in a nanodisk pair was numerically investigated via micromagnetic simulations. The results show that in a single one-side-flat nanodisk, there exists a preferred rotational sense at the remanent state after the nanodisk is saturated by the external magnetic field, applied parallel to the flat edge of the nanodisk. The shape anisotropy is the primary cause of this phenomenon. We further found that the obtained rotational senses of the magnetization in the vortex state in nanodisks with the same geometrical parameters but different thickness (20 nm and 50 nm) are opposite for the same direction of the externally applied field. This is attributed to the competition between the demagnetization field energy and the exchange energy during the vortex formation. The method we proposed provides a simple means of controlling the vortex state that can thus become a useful tool for designing vortex-based devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3