Numerical investigation of scale effect on acoustic scattering by vortex

Author:

Ma Rui-Xuan,Wang Yi-Min,Zhang Shu-Hai,Wu Cong-Hai,Wang Xun-Nian, ,

Abstract

When acoustic waves propagate through a volume of vortical flows, the strong nonlinear scattering lead the amplitude, the frequency, and the phase of the incident waves to change obviously. As one of the most significant problems in the area of aeroacoustics, the scattering of acoustic waves by a vortical flow plays a main role in industrial applications and scientific research. In this study, we start from an elementary vortex model. The scattering of plane acoustic waves from a Taylor vortex is investigated by solving two-dimensional Euler equations numerically in the time domain. To resolve the small-amplitude acoustic waves, a sixth-order-accurate compact Padé scheme is used for spatial derivatives and a fourth-order-accurate Runge-Kutta scheme is used to advance the solution in time. To minimize the reflection of outgoing waves, a buffer zone is used at the computational boundary. The computations of scattered fields with very small amplitudes are found to be in excellent agreement with a benchmark provided by previous studies. Simulations for the scattering from a Taylor vortex reveal that the amplitude of the scattered fields is strongly influenced by two dimensionless quantities: the vortex strength <inline-formula><tex-math id="M1">\begin{document}${M_v}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M1.png"/></alternatives></inline-formula> and the length-scale ratio <inline-formula><tex-math id="M2">\begin{document}$\lambda /R$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M2.png"/></alternatives></inline-formula>. Based on a global analysis of scale effects of these two dimensionless quantities on the scattering cross-section, the whole scattering domain defined on the <inline-formula><tex-math id="M3">\begin{document}${M_v} - \lambda /R$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M3.png"/></alternatives></inline-formula> plane is divided into three subdomains. As the vortex strength <inline-formula><tex-math id="M4">\begin{document}${M_v}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M4.png"/></alternatives></inline-formula> increases and the length-scale ratio <inline-formula><tex-math id="M5">\begin{document}$\lambda /R$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M5.png"/></alternatives></inline-formula> decreases, the acoustic scattering from a compact vortex goes through the long-wavelength domain, the resonance domain, and the geometrical acoustics domain in turn. The associated scattered fields with the increasing of intensity show more irregularities. The scattering in the long-wavelength domain possesses four primary beams described by half-sine functions, which scales as <inline-formula><tex-math id="M6">\begin{document}${M_v}{\left( {\lambda /R} \right)^{ - 2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M6.png"/></alternatives></inline-formula>. In particular, the directivity of the scattered field with a very low Mach number and a very long wavelength behaves as <inline-formula><tex-math id="M7">\begin{document}${M_v}{\left( {\lambda /R} \right)^{ - 2}}\left| {\sin \left( {\theta /2} \right)} \right|$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M7.png"/></alternatives></inline-formula>. In the resonance domain, the beams in the opposite direction to the incident waves decay rapidly. The rest of two beams follow the <inline-formula><tex-math id="M8">\begin{document}${M_v}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20202206_M8.png"/></alternatives></inline-formula> scaling. The scattered fields are concentrated around the direction of the incident wave in the geometrical acoustics domain, where the primary beams are surrounded by several small sub-beams. The physical mechanism of the acoustic scattering caused by a vortex involves two different mechanisms, namely nonlinear scattering effect and linear long-range refraction effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3