Electronic structures and defect properties of lithium-rich manganese-based ternary material Li1.208Ni0.333Co0.042Mn0.417O2

Author:

Huang Wen-Jun,Wang Ya-Ping,Cao Xin-Rui,Wu Shun-Qing,Zhu Zi-Zhong,

Abstract

Lithium-rich manganese-based ternary cathode material for lithium-ion batteries, Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>, has excellent structural stability and electrochemical stability due to its high Ni content. In order to understand the physical properties of this lithium-rich material, its crystal structure, electronic structure and defect properties are calculated by employing the first-principles method based on the density functional theory. The obtained electronic structure shows that Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub> is a magnetic semiconductor with a direct band gap of 0.47 eV. The analysis of the electronic state suggests that the electronic state at the valence band maximum (VBM) is the hybridization of p<sub><i>x</i></sub>, p<sub><i>y</i></sub>, p<sub><i>z</i></sub> orbitals of oxygen and the d<sub><i>xy</i></sub>, d<sub><i>yz</i></sub>, d<sub><i>xz</i></sub> orbitals of Ni-atom. The electronic state at the conduction band minimum has similar characteristics to those at the VBM, however, part of Ni-<inline-formula><tex-math id="M5">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.png"/></alternatives></inline-formula> and Mn-<inline-formula><tex-math id="M6">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.png"/></alternatives></inline-formula>, and Mn-<inline-formula><tex-math id="M7">\begin{document}${3{\rm{d}}}_{yz}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.png"/></alternatives></inline-formula> also contribute to the electronic hybridizations. The charge density difference calculations indicate that the bonding between O and transition metal atoms are through the mixture of covalent bond with ionic bond. The vacancy formation of a single metal atom is also calculated. The results show that the volumes of the defect systems containing metal vacancies are all reduced in comparison with the volume of perfect lattice. The volume change is the largest for the formation of Mn-vacancy, while the volume is almost unchanged with Co atoms extracted. The vacancy formation energies of the metals are <i>E</i><sub>f</sub> (Mn) > <i>E</i><sub>f</sub> (Co) > <i>E</i><sub>f</sub> (Ni), and the vacancy formation energy of Mn is significantly higher than those of Ni and Co, indicating that the presence of Mn provides a major structural stability for the material. The calculated charge density differences also show that the formation of metal vacancies influences only the charge distribution of the oxygen atoms around the vacancy, showing the local character of the vacancy effect. Since the formation of metal vacancy breaks the bonding between the metal and the surrounding oxygen atoms, the O-2p states near the Fermi surface are significantly increased as shown in the calculated electronic density of states. Such a picture suggests that the electrons on oxygen atoms in vicinity of the metal vacancies become freer.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3