The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model

Author:

You Bing-Ling,Liu Xue-Ying,Cheng Shu-Jie,Wang Chen,Gao Xian-Long,

Abstract

<sec>We use the mean field approximation method to study the quantum phase transitions of the Jaynes-Cummings lattice model and the Rabi lattice model. The effective Hamiltonians are obtained for the JC and Rabi model including the Kerr nonlinear term. Numerically we diagonalized the Hamiltonian matrix and calculated the superfluidity order parameter and the two-photon correlation function by solving the iteration equations.</sec><sec>We have explored the Mott insulating-superfluid quantum phase transition, the bunching-antibunching behavior of light, and the effect of Kerr nonlinear term on the quantum phase transition and photon statistical characteristics. Our results show that in the JC lattice model, by increasing <i>J</i>, a quantum phase transition takes place and the system is driven to a superfluid phase. The phase boundaries of the Mott lobes are <i>N</i>-dependent. However the photon will always be in a bunching statistical behavior irrelevant of the coupling strength between the two-level atom and the phonton and the nonlinear Kerr effect.</sec><sec>In the Rabi lattice model, the anti-rotating wave term breaks Mott-lobe structure of the phase diagram and the increase of the two-level atom and photon interaction strength <i>g</i> and the photon transition strength <i>J</i> between the lattices drive the system from the Mott insulating phase to the superfluid phase. The photon statistical behavior changes from the bunching to the antibunching one when considering the anti-rotating wave term, which is important in the strongly coupled systems. Most interestingly, the increase of the Kerr nonlinear coefficient will inhibit the Mott insulating phase-superfluid phase transition, but favor the superfluid phase and the transition from the bunching to anti-bunching statistics.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3