Classification of benign and malignant breast masses using entropy from nonlinear ultrasound radiofrequency signal

Author:

Zhang Mei-Mei,Gao Fan,Tu Juan,Wu Yi-Yun,Zhang Dong, ,

Abstract

In this paper the classification of benign and malignant breast masses is investigated by using the entropy of nonlinear ultrasound radio frequency (RF) signal. The parameters (entropy and weighted entropy) derived from the nonlinear ultrasound RF signal and the conventional ultrasound parameters (image grayscale, aspect ratio, irregularity, breast mass size, and depth) are extracted from 306 image samples (158 benign and 148 malignant); t-test and linear-discriminant classifier (LDC) are used to test the distinction between benign and malignant breast masses by each parameter; furthermore the effective parameters are combined to classify benign and malignant breast masses. The results show that except the image grayscale, the other parameters are significantly different between benign and malignant breast masses. Multi-parameter combined with support vector machine (SVM) is used to classify breast masses as benign and malignant. The accuracy is 81.4%, the sensitivity is 78.4%, and the specificity is 84.2%. The present work shows that the combination of the nonlinear entropy of ultrasound RF signal and traditional ultrasound parameters can more effectively characterize the benign and malignant breast masses. The entropy of nonlinear ultrasound RF signal can become a new parameter for characterizing the benign and malignant breast masses.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3