Experimental study of terahertz radiation driven by femtosecond ultraintense laser
-
Published:2021
Issue:8
Volume:70
Page:085205
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Wang Tian-Ze,Lei Hong-Yi,Sun Fang-Zheng,Wang Dan,Liao Guo-Qian,Li Yu-Tong, , , ,
Abstract
Powerful terahertz (THz) radiation sources are crucial to the development of THz science. High-energy strong-field THz pulses have many significant applications such as in the ultrafast control of matter and the THz-driven electron acceleration. In recent years, ultraintense laser-plasma interactions have been proposed as a novel approach to strong-field THz generation. In this paper, the experimental results are presented about the generation of THz radiation from a solid foil irradiated by a 10-TW femtosecond laser pulse. The THz energy as a function of laser energy and defocusing amount is studied. It is found that both the THz energy and the laser-to-THz conversion efficiency increase nonlinearly with the laser energy increasing. At maximum laser energy ~270 mJ, the measured THz pulse energy is 458 μJ, corresponding to a laser-to-THz energy conversion efficiency of 0.17%. No indication of saturation is observed in the experiment, implying that a stronger THz radiation could be achieved with higher laser energy. By simultaneously monitoring the backward scattered laser light spectrum, it is qualitatively understood that the observed THz radiation as a function of laser energy and laser defocusing distance is closely related to the electron heating mechanisms at different laser intensities. The THz spectrum and polarization are characterized by using different band-pass filers and a wire-grid polarizer, respectively. The THz radiation covers an ultrabroad band ranging from 0.2 THz to 30 THz, and shows a radially polarized distribution. By fitting the measured THz spectrum with the theory of coherent transition radiation, the THz pulse duration is inferred to be about 30 fs. At the THz focal spot of ~1 mm in size, the THz field strength is evaluated to be 3.68 GV/m. Such a strong-field THz source will enable the study of extreme THz-matter interactions.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference23 articles.
1. Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001 2. Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345 3. LaRue J L, Katayama T, Lindenberg A, Fisher A S, Ostrom H, Nilsson A, Ogasawara H 2015 Phys. Rev. Lett. 115 036103 4. Zhao L R, Tang H, Lu C, Jiang T, Zhu P F, Hu L, Song W, Wang H D, Qiu J Q, Jing C G, Antipov S, Xiang D, Zhang J 2020 Phys. Rev. Lett. 124 054802 5. Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H, Lindenberg A 2013 Rev. Sci. Instrum. 84 022701
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|