Effect of charge coupling on breakdown voltage of high voltage trench-gate-type super barrier rectifier

Author:

Xu Da-Lin,Wang Yu-Qi,Li Xin-Hua,Shi Tong-Fei, , ,

Abstract

With the rapidly increasing demands pertaining to high voltage applications in modern power electronic systems, power devices have become widely used in today’s power applications. As a major carrier device without unreliable metal-semiconductor Schottky contact, super barrier rectifier (SBR) has been one of promising substitutions for traditional diodes since it was first introduced, owing to its excellent performance and reliability. The main principle behind SBR approach is to create an adjustable potential barrier in the MOS channel. The height of this barrier can be easily adjusted by the doping concentration in the channel and by the oxide thickness. Trench-gate-type SBR (TSBR) with a trench gate is so designed that the junction-type field-effect transistor effect of planar gate structure enables TSBR to be eliminated to have ultralow forward voltages and a good tradeoff between the forward voltages and reverse leakage currents. However, the charge coupling effect under reverse bias, which is usually neglected and not intensively studied, plays an important role in determining the breakdown voltage of TSBR for high voltage applications (above 200 V). In this paper, the two-dimensional electric field distribution influenced by the charge coupling effect is explained and verified by the analytical model and device simulations with TCAD software Sentaurus. Adjusting the key parameters including the trench depth, oxide thickness and mesa width can improve the tradeoff between the forward voltage drops and breakdown voltages. The optimization of key parameters can provide the significant guidance for designing the device structure. Furthermore, some considerations for designing the TSBRs are discussed in this paper. In addition, a novel TSBR with the stepped oxide structure (SO-TSBR) is proposed and demonstrated. Similar to, yet different from, the stepped oxide structure for dual trench MOSFET, the stepped oxide design equipped with this new rectifier possesses the ability to enhance the forward conduction. As indicated by the simulation results, the SO-TSBR reduces the forward voltage drop by 51.49% at a forward current density of 2.5 A/cm<sup>2</sup> compared with the normal structure of TSBR, with almost the same breakdown voltage of 270 V. The optimized TSBRs and SO-TSBRs are very promising rectifiers that can be used in high power electronic systems, because their breakdown voltages are both greater than 250 V.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Trench MOS Barrier Schottky Contact Super Barrier Rectifier;IEICE Transactions on Electronics;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3