Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface
-
Published:2021
Issue:10
Volume:70
Page:106101
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Yang Quan,Ma Li,Geng Song-Chao,Lin Yi-Ni,Chen Tao,Sun Li-Ning, ,
Abstract
The interfacial contact configuration and contact intensity between carbon nanotube and metal surface play an important role in the electrical performance of carbon nanotube field effect transistors and nanoscale carbon nanotube robotic manipulation. In this paper, we investigate numerically the contact configuration and the contact intensity between multiwall carbon nanotube with open ends or capped ends and various metal surfaces in carbon nanotube field effect transistor assembly by the molecular dynamics simulation. The simulation results show that the change in the position and shape of multiwall carbon nanotube on the metal surface are mainly due to the decrease of van der Waals energy reduction: the decrement of van der Waals energy is converted into the internal energy and kinetic energy of carbon nanotubes. Moreover, the binding energy between multiwall carbon nanotube and metal surface is negative, which indicates that multiwall carbon nanotube adheres to the metal surface. In addition, the contact intensity of multiwall carbon nanotube in horizontally contacting metal surface is influenced by initial distance, contact length and metal materials. The final equilibrium distance is around ~0.3 nm when the initial distance is less than ~1 nm. And the contact intensity increases with the augment of contact length between carbon nanotube and metal. The contact intensity between platinum and carbon nanotube is larger than that between tungsten and aluminum, therefore, platinum-coated probe is generally utilized for picking carbon nanotube up. The contact intensity of the carbon nanotubes with the open ends and closed ends in the vertical contact with the metal surface are both lower than those in the horizontal contact. The interfacial contact configuration of carbon nanotube and metal materials mainly include the displacement and geometric deformation of carbon nanotube. The displacement and geometric deformation of multiwall carbon nanotube with open ends on the metal surface finally result in its radial nanoscale ribbon structure. But the closed-end three-wall carbon nanotube has the small axial geometric deformation through comparing the concentration profiles between the initial carbon nanotube and the collapsed carbon nanotube. In a carbon nanotube field effect transistor, the collapsed multiwall carbon nanotube forms the ribbon structure like a single wall carbon nanotube. And the distance between carbon nanotube walls and between the outermost carbon nanotube wall and the metal electrode are both about ~0.34 nm. The atomic scale spacing ensures that electrons tunnel from the metal to the outermost carbon nanotube wall and migrate radially between the inner carbon nanotube walls.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference45 articles.
1. Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X, Ausman K D, Ehr J R V, Ruoff R S 1999 Nanotechnology 10 244 2. Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, S. R R 2000 Science 287 637 3. Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137 4. Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801 王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801 5. Zhang Z Y, Wang S, Ding L, Liang X L, Xu H L, Shen J, Chen Q, Cui R L, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|