Effects of swells on sound propagation in surface duct environment in shallow water

Author:

Liu Jin,Peng Zhao-Hui,Zhang Ling-Shan,Liu Ruo-Yun,Li Zheng-Lin, ,

Abstract

Surface duct is a common duct due to strong sea winds and sea-atmosphere interactions in winter and it is an excellent waveguide in which energy may propagate a long distance. However, the rough interface formed by sea surface waves will seriously damage this excellent performance. In this study, the experimental data of sound propagation over the continental slope in the South China Sea are used to analyze the characteristics of sound propagation in a surface duct. Modeling analyses based on the parabolic equation model RAM and ray trace theory BELLHOP are used to examine these characteristics. The parameters of sea bottom, source depth, wind-driven sea surface, and swell-containing sea surface are taken into consideration in the model. The results show that when the source is located in the surface duct, the parameters of the sea bottom have little influence on sound propagation, while the change of source depth exerts some effects on the sound propagation. By combining the Pierson Moscowitz (PM) spectrum with Monte Carlo method, the rough sea surface is investigated. Since the PM spectrum is related only to wind speed, the wind-driven sea surface is generated by using the actual wind speed measured by the shipborne anemometer. The swell-containing sea surface is defined as a superposition of a sinusoidal pressure-release surface and the wind-driven sea surface. By comparing the effects of two sea surfaces on sound propagation, it is found that when the wind speed is small, swells play an important role in the surface-duct propagation. Experimental data show that for the acoustic signal with a center frequency of <inline-formula><tex-math id="M3">\begin{document}$1000\;{\rm{Hz}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M3.png"/></alternatives></inline-formula>, the swell-containing sea surface brings around <inline-formula><tex-math id="M4">\begin{document}$10 \;{\rm{dB}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M4.png"/></alternatives></inline-formula> loss to a distance of <inline-formula><tex-math id="M5">\begin{document}$70 \;{\rm{km}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M5.png"/></alternatives></inline-formula>. For the two kinds of rough sea surfaces, rays at launch angles of <inline-formula><tex-math id="M6">\begin{document}$\pm 1^{\circ}, 0^{\circ}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20201549_M6.png"/></alternatives></inline-formula> are plotted to examine their effects on sound propagation. The results indicate that the swell-containing sea surface which has greater roughness makes rays go toward the sea bottom, thus resulting in larger loss. Therefore, in order to investigate the characteristics of the sound field in the northern South China Sea in winter, especially with high frequency sound signals, the influences of not only winds and waves, but also the swells from the surrounding sea should be taken into consideration. It is important to study the characteristics of sound propagation with swells for improving the performance of sonar equipment in poor sea conditions.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Zhang L S 2016 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)
张灵珊 2016 博士学位论文 (北京: 中国科学院大学)

2. Yin S 2018 M. S. Thesis (Harbin: The Harbin Engineering University) (in Chinese)
尹爽 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

3. Li Z L 2002 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)
李整林 2002 博士学位论文 (北京: 中国科学院研究生院)

4. Wang X H, Peng Z H, Li Z L 2007 Technical Acoustics 26 551
王先华, 彭朝晖, 李整林 2007 声学技术 26 551

5. Thorsos E I, Broschat S L 1995 J. Acoust. Soc. Am. 97 2082

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3