Vibrational behavior of coated microbubble in finite tube under magneto-acoustic composite field

Author:

Shi Hui-Min,Hu Jing,Wang Cheng-Hui,Feng Fei-Long,Mo Run-Yang,

Abstract

The dynamic behavior of coated microbubble in a magneto-acoustic field is very significant for its application to therapy. In this paper, the radial vibration equation of microbubble is derived by placing the coated-microbubbles in a tube filled with magnetic fluid and considering the magnetic pressure on the magnetic fluid under the magneto-acoustic field. The dynamic equation is nondimensionalized by using characteristic quantities such as Weber number and Reynolds number. The effects of magnetic-acoustic field parameters and magnetofluid characteristics on the vibration behavior of the vibration system are analyzed by the Runge-Kutta method. The results show that the magnetic field can prevent the collapse and make bubble oscillate stably. When the acoustic field is constant, the magnetic field can stabilize the oscillation of the microbubble and increase the equilibrium radius of the oscillating microbubble. The stronger the magnetic field is, the more obvious the influence of magnetofluid magnetisability <i>χ</i><sub>m</sub> on the vibration of the microbubble is and the stronger the nonlinear of the transient response of the microbubble is when the magnetic field is larger. In addition, the larger acoustic field parameters will enhance the response of oscillating microbubble to magnetic field. The larger the magnetic field is, the weaker the influence of acoustic parameters on the oscillations of microbubble is. Also, the transient response of microbubble is obviously nonlinear, but the steady-state response keeps the reciprocating oscillation with small amplitude. It can be seen that the adjusting of the magneto-acoustic field is beneficial to realizing the stable oscillation of microbubble in the blood vessel and avoiding collapse.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3