Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure

Author:

Wang Jing-Li,Zhang Jian-Zhe,Chen He-Ming, ,

Abstract

Ring resonator fabricated on a silicon-on-insulator is versatile in optical integration, which can be used to realize filters, modulators and switches. However, silicon-on-insulator is difficult to control the polarization dependence, and thus its application is greatly limited. The polarization dependence of the ring resonator is caused mainly by two factors: the coupling coefficients of the coupling region at the same wavelength for the two orthogonal polarization modes are different, and the birefringence effect of curved waveguide results in the different resonant wavelengths of TE and TM polarization modes. When the coupling region polarization independence and the resonant wavelength polarization independence are simultaneously satisfied, the polarization independence of the ring resonator can be realized. In this paper, a new type of polarization-insensitive ring resonator on a silicon-on-insulator is designed based on subwavelength grating and sandwiched structure. Firstly, by adjusting the duty cycle of the subwavelength grating and the refractive index of SiN<i><sub>x</sub></i> in the coupling region, polarization independence of the coupling region is achieved. Secondly, the refractive index of SiN<i><sub>x</sub></i> in curved waveguides is designed to make the resonance wavelengths for orthogonal polarization modes equal. Thirdly, the parameters of the coupling region are optimized to reduce the insertion loss. The three-dimensional finite-difference time-domain method is used for simulation. The results show that the radius of the ring is only 10 μm, the 3-dB bandwidth of the device is less than 0.8 nm, and the insertion loss is lower than 0.8 dB. It has potential applications in the future dense wavelength division multiplexing systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3