Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition

Author:

Li Ye,Wang Xi-Xi,Wei Hui-Yun,Qiu Peng,He Ying-Feng,Song Yi-Meng,Duan Zhang,Shen Cheng-Tao,Peng Ming-Zeng,Zheng Xin-He,

Abstract

Quantum dot-sensitized solar cells have gained rapid development which could produce potential applications. Although they have a theoretical photoelectric conversion efficiency of 44%, there is still a considerable gap in comparison with corresponding practical solar cells, which is mainly due to the fact that the interface transfer, stability and efficiency improvement are still facing some problems. In particular, the carrier recombination loss at the cell interface seriously hinders the quantum dot-sensitized solar cells from developing. In this work, an ultra-thin layer of InN prepared by plasma-enhanced atomic layer deposition is inserted into the FTO/TiO<sub>2</sub> interface of the photoanode of CdSeTe based quantum dot-sensitized solar cells to improve the performance of the photoanode structure, and physical mechanism behind the device is discussed. We first investigate the effects of different deposition temperatures (170, 200 and 230 ℃) on the cell performance of InN films. While the InN ultra-thin layer is deposited at 200 ℃, an enhancement of 16.9% in conversion efficiency is achieved as compared with the reference group. Then, the effects of different thickness (5, 10, and 15 cycles) on the cell are investigated at a fixed deposition temperature of 200 ℃. Additionally, an improvement of fill factor for the device after an introduction of InN layer is observed. This enhancement is further convinced by an apparent reduction of series resistance extracted by the Nyquist curve. The significant increase in fill factor indicates that the introduction of InN accelerates the extraction, transfer and separation of electrons, and reduces the possibility of photon-generated carriers recombination. However, the insertion of InN deposition temperature and thickness have a certain range of enhancement in the cell performance, and further investigation of the mechanism will be carried out.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3