Two-step phase shifting profilometry based on Lissajous ellipse fitting technique

Author:

Zhu Jin-Jin,Wu Yu-Xiang,Shao Xiao-Peng,

Abstract

<sec> Phase shifting profilometry (PSP) is an effective technique to reconstruct the three-dimensional shape of object. In general, PSP needs three or more fringe patterns with phase-shifting accurately known to extract the phase distribution of objects. Therefore, the scene and the test objects should remain stationary during capturing the fringe patterns. However, the phase shifts may be unknown in an actual PSP measurement system, especially when measuring the moving object, that is, the phase-shift error may be introduced during the obtaining of the phase-shifting fringe patterns of moving object. In the dynamic measurement scenario, the use of fewer fringe patterns can realize the faster measurement speed and suppress the phase shift error introduced by the moving object. In this paper, a two-step PSP algorithm is proposed based on Lissajous ellipse fitting (LEF). The proposed method uses only two fringe patterns to extract the phase distribution of the object and can suppress the phase shift error caused by the moving object. </sec><sec> However, in a practical PSP system, the spatiotemporally varying background intensity and modulation also significantly affect the phase accuracy extracted by LEF, and thus three error-suppressing methods are proposed to reduce the phase error caused by the non-uniform background intensity and modulation. In order to verify the effectiveness of the three error-suppressing methods, we analyze and compare their performances of error suppression under different background intensities and modulations. The advantages of three error-suppressing methods can be summarized as follows. 1) The mean and modulation correction technique has greater advantage than the other two when the background intensity and modulation vary with time. 2) When the background intensity and modulation are relevant to pixel position and the number of fringe patterns, the empirical mode decomposition normalization can more effectively suppress the influence of the non-uniform background intensity and modulation. </sec><sec> In experiment, a two-step phase-shifting dynamic measurement based on LEF is conducted. Compared with the traditional PSP which needs at least three fringe patterns, the two-step PSP algorithm successfully extracts the phase with only two fringe patterns and suppresses the phase shift error caused by the motion of the object. Compared with Fourier transform profilometry (FTP), the two-step PSP algorithm can obtain very accurate phase distribution and retain many phase details. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3