Optimal design and experimental research of several-gigawatt multiple electron beam diode

Author:

Liu Zhen-Bang,Jin Xiao,Huang Hua,Wang Teng-Fang,Li Shi-Feng,

Abstract

The relativistic klystron amplifier (RKA) is one of the most efficient sources to amplify a high-power microwave signal due to its intrinsic merit of high-power conversion efficiency, high gain and stable operating frequency. However, the transverse dimensions of the RKA dramatically decrease when the operating frequency increases to X band, and the power capacity of the RKA is limited by the transverse dimensions. An X-band multiple-beam relativistic klystron amplifier is proposed to overcome the radiation power limitation. Each electron beam propagates in separate drift tubes and shares the same coaxial interaction cavities in the multiple-beam relativistic klystron amplifier, and the transverse dimensions of the multiple-beam relativistic klystron amplifier are free from the operating frequency restriction and a microwave power of over 1 GW is generated in the experiment. For a high-power electron device, the transmission of electron beam is critical, and the power conversion efficiency of the device is affected. In this paper, we conduct an investigation into the transmission process of the intense relativistic multiple electron beams, and the number of the multiple electron beams is set to be 16. It is found that when the multiple electron beam is transmitted in the device, the electron beam rotates around the center of the whole device, causing the electron beam to deviate from the drift tube channel. At the same time, each electron beam rotates around itself, and the cross section of the electron beam is deformed and expanded. In the improper design of electron beam and drift tube parameters, two kinds of rotating motions cause beam to lose. A multiple-electron-beam diode structure is optimized by the particle-in-cell simulation to reduce beam loss, with the effects of the related factors taken into account. Each pole of the cathodes is made up of graphite and stainless steel. The cathode head is made up of graphite, for the graphite has a lower emission threshold. The cathode base and cathode pole are made up of stainless steel, for the stainless steel has a higher emission threshold. Also the shape and structure of cathode pole, cathode head and anode are optimized to reduce the electric field intensity on the cathode pole and enhance the electric field intensity on the end face of cathode head. At the same time, the electric field distribution of the cathode head is uniform to improve the electron beam emission uniformity. The simulation results demonstrate that the transmission efficiency of multiple electron beams can reach 99%. In the experiment, the transmission efficiency of multiple electron beams is 92% with a beam voltage and beam current of 801 kV and 9.3 kA, respectively.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Benford J, Swegle J A (translated by Jiang W H, Zhang C) 2008 High Power Microwave (2nd Ed.) (Beijing: National Defense Industry Press) pp3−5 (in Chinese)
Benford J, Swegle J A 著 (江伟华, 张弛 译) 2009 高功率微波 (第二版) (中译本) (北京: 国防工业出版社) 第3−5页

2. Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp7−13 (in Chinese)
丁耀根 2010 大功率速调管的制造和应用 (北京: 国防工业出版社) 第7−13页

3. Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp282−289 (in Chinese)
Robert J B, Edl S 2005 高功率微波源与技术 (中译本) (北京: 清华大学出版社) 第282−289页

4. Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402
黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402

5. Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101
吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3