Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state

Author:

Zhao Jia-Lin,Cheng Kai,Yu Xue-Ke,Zhao Ji-Jun,Su Yan, ,

Abstract

Nitro explosive is a main type of energetic material which can release a large amount of energy when detonated under extreme conditions. Further study of the excited state dynamics of photo-induced nitro explosive can provide an effective method to understand the complex process of ultrafast detonation physics. In this paper, the initial step of photodissociation at the first excited electron state of some typical nitro explosives including nitromethane (NM), cyclotrimethylenetrinitramine (RDX) and triaminotrinitrobenzene (TATB) is studied using the time-dependent density functional theory and the molecular dynamic method. The transient structures of energetic molecules and time evolutions of excited energy levels are observed. It is found that the structural relaxation of energetic molecules occurs immediately after the electronic excitation, and the entire photoexcitation process comes into being within a range of 200 fs. At the same time, the positions of molecular energy levels change to various degrees with the oscillations of different frequencies, such as the overlap between HOMO and LUMO, which is related to the obvious change of molecular configuration, indicating that the energy of excited carriers transfers to atoms in the form of heat through electron-phonon coupling, and the energy is redistributed through vibration relaxation in the initial stage of photodissociation which causes the chemical bonds of C—H, N—N and N—N to rupture, and the hydrogen atoms dissociated from methyl, methylene or amino groups, and the nearest nitro group to form some new intermediate states. In this process, the energy levels near the excited electron and hole energy also change significantly with time, suggesting that the coupling between electron and electron also plays a role in the dissociation process. Comparing with NM and RDX, the evolution of the excited energy level of TATB has obvious lower-frequency (phonon frequency) oscillations, showing that the coupling between electronic state and phonon of TATB is weak and thus makes it more difficult to dissociate. Our study can deepen the understanding of the structural relaxation of excited states and the time evolution of excitation energy levels in energetic materials, and provide a new understanding of the photoinduced reaction and the initial steps of laser ignition in energetic materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3