A modeling and inversion method of spin echoes to measure magnetic resonance sounding transverse relaxation time in surface applications

Author:

Yang Yu-Jing,Ye Rui,Zhao Han-Qing,Wan Ling,Lin Ting-Ting, ,

Abstract

Surface magnetic resonance sounding (MRS) has generally been considered to be an efficient tool for hydrological investigations. As is well known, the effective relaxation time <inline-formula><tex-math id="M1">\begin{document}$ T_2^*$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M1.png"/></alternatives></inline-formula> which characterizes the decay rate of MRS free-decay-induction (FID) signal and is used to measure pore-scale properties, is particularly limited for several special cases (e.g. areas with magnetic rock subsurfaces). Recent years, the transverse relaxation time <inline-formula><tex-math id="M2">\begin{document}$ T_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M2.png"/></alternatives></inline-formula> obtained from spin-echo signal was adopted to implement the surface MRS, and showed great potentials for estimating the porosity and permeability. However, owning to the short period of development, the related modeling and inversion strategies are rarely introduced and summarized. Actually, the general practice for surface MRS <inline-formula><tex-math id="M3">\begin{document}$ T_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M3.png"/></alternatives></inline-formula> measurement fits the spin-echo by the exponential function and the fitting line was directly used as the FID signal for inversion. This scheme not only limits the precision of interpretation, but also loses part of valid information about original field data. Aiming at these problems, in this paper, we introduce the calculation of forward model and thus a two-stage framework with singular value decomposition (SVD) linear inversion involved is derived to quantify the <inline-formula><tex-math id="M4">\begin{document}$ T_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M4.png"/></alternatives></inline-formula> distributed with depth. Considering the fact that the inversion result of SVD is always strongly affected by the noise level, an improved method which combines the simultaneous iterative reconstruction technology (SIRT) with SVD is proposed. To be specific, we compare the measurement schemes with kernel functions between <inline-formula><tex-math id="M5">\begin{document}$ T_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M5.png"/></alternatives></inline-formula> and the original theory in MRS, and then provide the forward and inversion formulations. In order to substantiate the effectiveness of this method, we conduct the synthetic experiments for Carr-Purcell-Meiboom-Gill sequence and explain the dataset with the mentioned strategies. As expected, the combined approach possesses a better performance in shallow layer with an error of 1.5% and 0.02 s for water content and <inline-formula><tex-math id="M6">\begin{document}$ T_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201427_M6.png"/></alternatives></inline-formula> for the contaminated data, respectively. With these advantages, it is expected to realize the adoption of the SVD with SIRT in field applications and further investigate the aquifer characterizations in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference34 articles.

1. Di Q Y, Wang M Y 2010 Bull. Eng. Geol. Environ. 69 105

2. Ronezka M K, Hellman K, Günther T, Wisén R, Dahlin T 2017 Solid Earth 8 671

3. Xue G Q, Hou D Y, Qiu W Z 2018 J. Environ. Eng. Geoph. 23 297

4. Chen K, Xue G Q, Chen W Y, Zhou N N, Li H 2019 Mine Water Environ. 38 49

5. Lin J, Duan Q M, Wang Y J 2010 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and its Applications (Beijing: Science Press) pp7−13 (in Chinese)
林君, 段清明, 王应吉 2010 核磁共振找水仪原理与应用 (北京: 科学出版社) 第7—13页

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3