Quantum steering based on cascaded four-wave mixing processes

Author:

Zhai Shu-Qin,Kang Xiao-Lan,Liu Kui, ,

Abstract

Multipartite quantum steering is an important quantum resource and the basis of secure quantum communication network. Multipartite quantum steering can be generated by beam splitter networks, optical frequency comb systems and nonlinear processes. Different types of quantum steering will be produced by different projects. In this paper, we design two different schemes, i.e. series cascaded four-wave mixing and hybrid cascaded four-wave mixing, and based on these two schemes tripartite quantum steering and quinquepartite quantum steering are generated respectively. The steering characters among different users are quantified based on the covariance matrix. In theory, we investigate steering parameters among different modes created by two schemes versus the amplitude gain of four-wave mixing process. We find that one mode can steer the other two modes separately, but the other two modes cannot steer the one mode simultaneously. By comparing the steering characters of joint multimodes to a certain single mode with the individual mode to the single mode respectively, it can be seen that the steerability of the former is stronger than the latter in the whole gain region, and there exists only the steering of joint multimodes to a single mode in the partial gain region. More importantly, the steerability of joint multimodes to a single mode can be enhanced with the quantity of joint multimodes increasing. The results show that multiple types of quantum steering can be realized by using these two schemes, which are helpful in understanding the distribution of quantum steering in multipartite system and have important significance in practical secure quantum communication and quantum secret sharing.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3