Measuring the impact of COVID-19 on China’s population migration with mobile phone data

Author:

Dai Bi-Tao,Tan Suo-Yi,Chen Sa-Ran,Cai Meng-Si,Qin Shuo,Lu Xin, ,

Abstract

Population migration is an essential medium for the spread of epidemic, which can accelerate localized outbreaks of disease into widespread epidemic. Large-scale population movements between different areas increase the risk of cross-infection and bring great challenges to epidemic prevention and control. As COVID-19 can spread rapidly through human-to-human transmission, understanding its migration patterns is essential to modeling its spreading and evaluating the efficiency of mitigation policies applied to COVID-19. Using nationwide mobile phone data to track population flows throughout China at prefecture-level, we use the temporal network analysis to compare topological metrics of population mobility network during two consecutive months between before and after the outbreak, i.e. January 1st to February 29th. To detect the regions which are closely connected with population movements, we propose a Spatial-Louvain algorithm through adapting a gravity attenuation factor. Moreover, our proposed algorithm achieves an improvement of 14% in modularity compared with the Louvain algorithm. Additionally, we divide the period into four stages, i.e. normal time, Chunyun migration, epidemic interventions, and recovery time, to describe the patterns of mobility network’s evolution. Through the above methods, we explore the evolution pattern and spatial mechanism of the population mobility from the perspective of spatiotemporal big data and acquire some meaningful findings. Firstly, we find that after the lockdown of Wuhan and effective epidemic interventions, a substantial reduction in mobility lasted until mid-February. Secondly, based on the economic interaction and geographic location, China has formed an urban agglomeration structure with core cities centering and radiating toward the surroundings. Thirdly, in the extreme cases, the dominant factor of population mobility in remote areas is geographic location rather than economy. Fourthly, the urban agglomeration structure of cities is robust so that when the epidemic weakens or disappears, the city clusters can quickly recover into their original patterns.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3