Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review

Author:

Xu Yu,Wang Chao-Liang,Qin Si-Cheng,Zhang Yu,He Tao,Guo Ying,Ding Ke,Zhang Yu-Ru,Yang Wei,Shi Jian-Jun,Du Cheng-Ran,Zhang Jing, , , ,

Abstract

<sec>Flexible porous materials play an important role in frontier science and technology fields. Surface modification will further endow the materials with diverse and excellent surface properties, and expand the scope of their applications in functional and intelligent wearable devices. Atmospheric pressure plasma technology has many advantages in treating the flexible materials, such as low temperature, low energy consumption, high efficiency, friendly environment, low cost, no change in material itself characteristics, suitability for roll-to-roll preparation, etc. Also, it presents good adaptability in applied environment and target materials. All these advantages meet the requirements of large area and low-cost surface modification of flexible porous materials.</sec><sec>In this paper, we review several researches of atmospheric pressure plasma surface modification of flexible porous materials used in advanced materials, new energy, environmental protection and biomedicine. The problems and challenges of stability and permeability encountered in uniformly treating the flexible and porous materials by atmospheric pressure plasma are presented. Then, we introduce our research work on atmospheric pressure plasma stable discharge, roll-to-roll coating treatment of permeability and uniformity. Finally, we introduce the breakthrough in and ideas on the deposition kinetics of nanoparticle thin films and their microstructure control by atmospheric pressure plasma. </sec><sec>However, there are still many challenges to be overcome in the applications of the methods in current situation. Basic characteristics, discharge modes of atmospheric pressure plasma and the relationships of plasma discharge to structure and property of the various treated materials need to be further explored. It is confirmed that the permeability and uniformity of the atmospheric pressure plasma treatment in flexible porous materials are very important and their in-depth investigations will promote the application of this method—a high efficient, environmentally-friendly and continuous way of realizing functional and intelligent wearable devices in the future.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3