Analysis for vortex superposition state evolution of microcavity exciton polariton excited by ring-shaped pump

Author:

Xiong Zhen-Yu,Cai Yuan-Wen,Wu Hao,Liu Tong,Liu Zheng-Liang,Ren Yuan, , ,

Abstract

Owing to its light effective mass, polariton can easily realize Bose-Einstein condensates (BEC) and can also produce gyro effect under external drive. Therefore, it has a promising application prospect. Based on the Gross-Pitaevskii equation, the evolution of the exciton polaron BEC system in the annular microcavity is studied. Two key parameters affecting the characteristics of the exciton polaron system, namely the size of the microcavity and the configuration of the ring-shaped pumped beam, are investigated. The size of microcavity often directly affects the volume and power consumption of integrated devices. In addition, the number of coherent petals of exciton polariton superposition state matter wave propagated in microcavity is closely related to the precision and sensitivity of gyro, and the size of microcavity has a direct effect on the number of coherent petals. At the same time, whether the pumping region is continuous or not also has a key effect on the evolution of the system, and different pump configurations will affect the evolutions of the system. We find that in the microcavity radius on a micron scale, the annular microcavity can excite the petal of vortex superposition state when pumped by pumping light, and the petals can be stable, but circular cavity with a certain radius can “accommodate” a limited vortex quantum number, when vortex quantum number is too large, the system will be unstable and unable to support the formation of stable petals. However, with the increase of the radius of the annular microcavity, the superposition petal number of the exciton polariton system contained in the annular region will also increase, and the maximum petal number contained in the exciton polariton system has a positive linear correlation with the inner radius of the annular microcavity. At the same time, we find that when the pump laser configuration is changed, the system will evolve into a special form of steady state. The calculation results show that when microcavity parameters are the same but for only changing the radial width of single pump, the number of petals obtained is three times that before changing the radial width. In such a case, the number of superposition petals not only exceeds the previously calculated maximum number of petals accommodated by the annular cavity under the radius but also there appear the multiple petals combined radially. Under the double-ring pump system, changing the width of the hollow ring may produce not only the new exciton polariton condensation in the hollow ring, but also vortex states in the original petal. Under each of the three-ring and four-ring pumping condition, the evolution of the system finally presents a multi-petal state in the radial direction. Because these vortex superposition states contain the information about the density and the phase, it has important guiding significance for designing the new system of gyroscope. Therefore, these special evolutionary results open a new direction for studying the new system gyroscope.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3