Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique

Author:

Wang Miao,Yang Wan-Min,Wang Xiao-Mei,Zan Ya-Ting,Chen Sen-Lin,Zhang Ming,Hu Cheng-Xi, ,

Abstract

High temperature superconductor has become one of the hotspots of research, because of its high critical temperature, strong trapped flux density, stable suspension characteristics and large magnet levitation force. The single domain REBa<sub>2</sub>Cu<sub>3</sub>O<sub>7–<i>δ</i></sub> (REBCO) superconductors have the wide and potential applications in the high-tech fields, such as micro-magnet superconducting maglev train, superconducting motor and superconducting magnetic separation system. However, a large number of multi-domain samples are easy to produce in the preparation process, which leads the success rate to decrease significantly and the cost to increase considerably, which restricts its practical application process. Inspired by the top seeded infiltration growth method, we develop a reliable method of recycling failed GdBCO sample by re-supplementing the liquid phase lost in the primary growth process and pretreating the failed sample as solid phase source billets. We recycle a series of GdBCO samples by using this new technique successfully. The growth morphology, superconducting properties, and microstructures of the recycled GdBCO bulk superconductors are investigated in detail in this study. The results show that the magnetic levitation forces of the recycled GdBCO samples are all greater than 30 N, their magnetic flux densities are all above 0.3 T, and their capture efficiencies are above 60%. These results provide the scientific basis and new ideas for developing the low cost and high efficient yield of fabrication of the REBCO bulk superconductors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3