Investigation of artificial quantum structures constructed by atom manipulation

Author:

Li Yu-Ang,Wu Di,Wang Dong-Li,Hu Hao,Pan Yi, ,

Abstract

The atom manipulation technique based on scanning tunneling microscope refers to a method of relocating single atoms or molecules on a certain surface at atomic accuracy by using an atomically sharp tip, which is a unique and powerful tool for studying the quantum physics and prototype quantum devices on a nanometer scale. This technique allows us to build artificial structure atom-by-atom, thus some desired interesting quantum structures which are difficult to grow or fabricate by conventional methods could be realized, and unique quantum states, spin order, band structure could be created by the fine tuning of the structural parameters like lattice constant, symmetry, periodicity, etc. Combined with nanosecond scale time domain electric measurement and autonomous control technique, the atom manipulation would be useful in exploring the atomic precision prototype quantum devices, and providing some valuable knowledge for future electronics. In this review, we introduce the atom manipulation technique and related milestone research achievements and latest progress of artificial quantum structures, including electronic lattices with exotic quantum states on Cu(111), quantum dots on III-V semiconductors, magnetic structures with tunable spin order, structures for quantum information storage and processing, prototype Boolean logic devices and single atom devices. The STM lithography and autonomous atom manipulation are discussed as well. With such improvements, this technique would play more important roles in developing the functional quantum devices in future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3