Micromagnetic studies of influence of interface atomic diffusion on magnetic properties of SmCo/Fe exchange-spring bilayers

Author:

He Xin-Xin,Zhao Qian,

Abstract

In this paper, based on three-dimensional micromagnetic numerical simulation, the influences of the interface layer formed by the atomic diffusion at the interface on magnetic properties in parallel SmCo/Fe bilayer and perpendicular SmCo/Fe bilayer are investigated. For the parallel system, whose nucleation occurs in the second quadrant, as the interface layer thickness increases, the nucleation field and the pinning field increase gradually though the remanence decreases gradually, hence the maximum energy product first goes up and then comes down. As a result, in the system there occurs the transition from the exchange-spring to the rigid magnet. For the perpendicular system, with the increase of the interface layer thickness, a gradual transition from the first quadrant to the second quadrant happens to its nucleation. Although the pinning field experiences the changes from decreasing to unchanging and to increasing, the nucleation field and remanence both rise gradually. Therefore, the energy product is enhanced gradually. During the demagnetization, there appears a spin deviation within the film plane: the parallel system shows a progress of generation and disappearance of the <i>flower</i> and <i>C</i> states; however, the perpendicular system shows a progress of generation and disappearance of the <i>vortex</i> state. With the increase of the ratio of the SmCo atomic diffusion in the interface layer of parallel SmCo/Fe bilayers, the nucleation and pinning field go up, but the remanence decreases, and hence the maximum energy product first rises and then drops. For the two easy axis orientations and any interface layer thickness, the nucleation field rises with the increase of interface exchange energy constant, indicating that the existence of an interface layer between the soft layer and hard layer enhances the exchange coupling interaction between them. The model in this paper well simulates the relevant experimental results [<ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.1063/1.2769755 "> 2007 <i>Appl</i>. <i>Phys</i>. <i>Lett</i>. <b>91</b> 072509</ext-link>].

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3