I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets

Author:

Zhou Xian-Ming,Wei Jing,Cheng Rui,Zhao Yong-Tao,Zeng Li-Xia,Mei Ce-Xiang,Liang Chang-Hui,Li Yao-Zong,Zhang Xiao-An,Xiao Guo-Qing, , ,

Abstract

The L-shell X-ray emissions of iodine are investigated as a function of target atomic number for 4.5-MeV I<sup>20+</sup> ions impacting on Fe, Co, Ni, Cu and Zn targets. Six distinct L-subshell X-rays are observed. The energy of the x-ray has a blue shift compared with the atomic data. The relative intensity ratio of Lβ<sub>1, 3, 4</sub> and Lβ<sub>2, 15</sub> to Lα<sub>1, 2</sub> almost increase linearly with the target atomic number increasing. The ratio of I(Lι) to I(Lα<sub>1, 2</sub>) and I (Lγ<sub>2, 3, 4, 4'</sub>) to I(Lγ<sub>1</sub>) are approximately proportional to the square of target atomic number. It is indicated that during the interaction of highly charged heavy ions with atom in the energy region near the Bohr velocity, the inner-shell process is mainly caused by the close-range collisions below the surface. There, the projectile not only has enough time to capture electrons from the target atom to be neutralized, but also has enough kinetic energy to ionize the inner-shell electron by coulomb interaction. At the balance between electron capture and ionization, the outer-shells of M, N, O etc. could be multiply ionized. The extent of multiple ionization increases with the target atomic number increasing. That leads to the energy shift, resulting in the change of the relative intensity ratio for the L-subshell X-ray. The smaller the atomic fluorescence, the larger the enhanced fluorescence caused by multiple ionization.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3