Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma

Author:

Cao Li-Yang,Ma Xiao-Ping,Deng Li-Li,Lu Man-Ting,Xin Yu,

Abstract

The capacitively coupled Ar plasma containing oxygen, driven by a radio frequency of 27.12 MHz, is investigated by laser-induced photo-detachment technique assisted with a Langmuir probe. The plasmas with different amounts of oxygen are obtained by changing the flow of Ar and oxygen, each of which is controlled by a mass flow controller. The axial distribution of plasma characteristic can be measured by changing the relative axial position of the Langmuir probe between the parallel electrodes. The electron density and electron temperature are calculated from the current-voltage curve measured by the scanning Langmuir probe, and the electronegativity is obtained from the current curves of the probe with the laser-induced photo-detachment technique. The negative ion density can be calculated from the electron density and the electronegativity. It is shown that with oxygen flow rate increasing, the dissociative attachment of oxygen molecules with electrons will consume the electrons with the middle energy in the electron energy probability function (EEPF) measured by Langmuir probe. The EEPF evolves from Druyvesteyn to Maxwellian distribution due to the thermalization by the e-e interaction with applied power increasing. It is worth mentioning that a depression in the EEPF curve will appear when discharging high-pressure Ar gas containing oxygen. This depression can also be caused by the dissociative attachment of oxygen molecules with electrons where the threshold energy is around 4.5 eV. The axial profile of the electron density is calculated from the EEPF changing from a linear rise in pure Ar plasma to a flater phase of the distribution due to the negative ions such as oxygen introduced into the plasma. The electron temperature changes a little at different axial positions. The rise of negative ion density nearby the sheath of powered electrode is due to the dissociative attachment caused by the collision of oxygen molecules with energetic electrons. In addition, the axial distribution of electronegativity takes on a shape of spoon, which results from the consequence of generation and loss of negative ions in the process of the ambipolar-electric-field-driven diffusion to the plasma center.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference61 articles.

1. Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5

2. Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887

3. Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112

4. Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955

5. Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3