Low-noise hierarchical phase unwrapping method for dual-wavelength digital holography using two synthetical wavelengths

Author:

Liu Lei,Xu Zhi-Bo,Qian Wen-Shuo,Li Wen-Jie,Xie Fang,Zhong Zhi,Shan Ming-Guang, ,

Abstract

Dual-wavelength digital holography can expand the unambiguous measurement depth in phase unwrapping by using a differential synthetic wavelength which is longer than the single illumination wavelength. However, the phase noise is significantly amplified due to the magnification of the differential synthetic wavelength, resulting in a lower measurement accuracy. On the other hand, a lower noise level can be achieved by using additive synthetic-wavelength which is shorter than the single illumination wavelength. However, the corresponding unambiguous measurement depth is greatly reduced due to the phase ambiguity. In this case, combining the merits of the differential synthetic-wavelength and the additive synthetic-wavelength, different low noise phase unwrapping algorithms have been developed in recent years. However, these algorithms are complex and time consuming because they need to calculate multiple intermediate variables or search for the constrained boundary conditions in two-dimensional space. Therefore, in this paper, we develop a hierarchical phase unwrapping algorithm by using the two synthetic wavelengths for dual-wavelength digital holography to realize low noise and fast unambiguous measurement with large depth. In this algorithm, the unwrapped phase difference obtained by the differential synthetic wavelength is used to guide the wrapped phase of one single wavelength to realize phase unwrapping, and then the optical path difference obtained by the single-wavelength unwrapped phase is employed to guide the wrapped phase sum, and thus realizing phase unwrapping. As a result, the phase noise is attenuated and the depth sensitivity is preserved for dual-wavelength phase unwrapping. After theoretical analysis, a series of simulation experiments is carried out on the reconstructed quality, anti-noise characteristics and speed through comparing with state-of-the-art dual-wavelength phase unwrapping algorithms, including the conventional algorithm, the linear programming algorithm and the direct linear programming algorithm. In this case, a flipping dual-wavelength common-path digital holography with orthogonal carrier is built to acquire multiplexed off-axis hologram in one shot and illustrate the operation of the algorithm with circular step target, and stability test of the setup. Both the simulation and experimental results show that the proposed method can be simplified and deterministic, resulting in a lower noise phase unwrapping in a time of 20.5 ms for a phase map of one megapixel. We expect that the proposed method can have practical applications in measurement that requires high accuracy, fast speed, and large depth.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3