THz electromagnetic wave regulated dissolution of methane hydrate

Author:

Zhu Zhi,Yan Shao-Jian,Duan Tong-Chuan,Zhao Yan,Sun Ting-Yu,Li Yang-Mei, ,

Abstract

Methane hydrate (so-called flammable ice) has many advantages such as wide distribution, large resource reserves, high energy density, being clean and pollution-free, etc. Thus, it has attracted much attention since it was discovered. Unfortunately, its exploration encounters many difficulties, which involve mainly with the dissolution process of caged methane hydrate. Therefore, in this work the specific effect of THz electromagnetic wave on decomposition of the hydrate is explored through molecular dynamics simulations. Analyzing the vibrational spectrum of the hydrogen-bond network in methane hydrate, no specific absorption peak is found in the bulk water. Applying a THz wave at this specific frequency to the methane hydrate, the original hydrogen-bond network is broken, the coordinate number of water molecules for the methane decreases, and ultimately the methane frees from the water cage. The <i>F</i><sub>4</sub> ordered parameters further validate the phase change from the crystal water to liquid water under the same THz field irritation. It is also proved that this peak absorption frequency has a remarkable superiority over other frequencies in decomposing the methane hydrate, hence it has specificity. Our findings support the feasibility of non-thermally dissolving methane hydrate, which promises to promote the exploitation efficiency and development of new energy sources in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3