Cascaded Hong-Ou-Mandel interference of entangled photon pairs and its application in multiple delay parameters measurement

Author:

Zhai Yi-Wei,Dong Rui-Fang,Quan Run-Ai,Xiang Xiao,Liu Tao,Zhang Shou-Gang, , ,

Abstract

<sec> The Hong-Ou-Mandel (HOM) interferometer using entangled photon source possesses important applications in quantum precision measurement and relevant areas. In this paper, a simultaneous measurement scheme of multiple independent delay parameters based on a cascaded HOM interferometer is proposed. The cascaded HOM interferometer is composed of <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M3.png"/></alternatives></inline-formula> concatenated 50∶50 beam splitters and independent delay parameters <inline-formula><tex-math id="M4">\begin{document}$ {\tau }_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M4.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ {\tau }_{2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M5.png"/></alternatives></inline-formula>, ···, <inline-formula><tex-math id="M6">\begin{document}$ {\tau }_{n} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M6.png"/></alternatives></inline-formula>. The numbers <inline-formula><tex-math id="M7">\begin{document}$ n=1, 2\;\mathrm{a}\mathrm{n}\mathrm{d}\;3 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M7.png"/></alternatives></inline-formula> refer to the standard HOM interferometer, the second-cascaded HOM interferometer, and the third-cascaded HOM interferometer, respectively. Through the theoretical study of the cascaded HOM interference effect based on frequency entangled photon pairs, it can be concluded that there is a corresponding relationship between the dip position and the independent delay parameter in the second-order quantum interferogram. In the standard HOM interferometer, there is a dip in the second-order quantum interferogram, which can realize the measurement of delay parameter <inline-formula><tex-math id="M8">\begin{document}$ {\tau }_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M8.png"/></alternatives></inline-formula>. In the second-cascaded HOM interferometer, there are two symmetrical dips in the second-order quantum interferogram, which can realize the simultaneous measurement of two independent delay parameters <inline-formula><tex-math id="M9">\begin{document}$ {\tau }_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M9.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ {\tau }_{2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M10.png"/></alternatives></inline-formula>. By analogy, in the third-cascaded HOM interferometer, there are six symmetrical dips in the second-order quantum interferogram, which can realize the simultaneous measurement of three independent delay parameters <inline-formula><tex-math id="M11">\begin{document}$ {\tau }_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M11.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ {\tau }_{2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M12.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ {\tau }_{3} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M13.png"/></alternatives></inline-formula>. Therefore, multiple independent delay parameters can be measured simultaneously based on a cascaded HOM interferometer. </sec><sec> In the experiment, the second-cascaded HOM interferometer based on frequency entangled photon source is built. The second-order quantum interferogram of the second-cascaded HOM interferometer is obtained by the coincidence measurement device. Two independent delay parameters <inline-formula><tex-math id="M14">\begin{document}$ {\tau }_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M14.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$ {\tau }_{2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M15.png"/></alternatives></inline-formula> are measured simultaneously by recording the positions of two symmetrical dips, which are in good agreement with the theoretical results. At an averaging time of 3000 s, the measurement accuracy of two delay parameters <inline-formula><tex-math id="M16">\begin{document}$ {\tau }_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M16.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M17">\begin{document}$ {\tau }_{2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20210071_M17.png"/></alternatives></inline-formula> can reach 109 and 98 fs, respectively. These results lay a foundation for extending the applications of HOM interferometer in multi-parameter quantum systems. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3