Dynamical phase transition and selective energy exchange in dual-cavity optochanical systems

Author:

Liu Ni,Zhang Xiao-Fang,Liang Jiu-Qing,

Abstract

<sec> In recent years, the cavity quantum photomechanics has been developed rapidly, and played a very important role in quantum information processing, quantum basic principle verification, and high-precision measurement. The kinds of quantum mechanical behaviors have also been explored and discovered in the study of cavity mechanics. By placing the Kerr medium in the system, quantum nonlinearity is introduced into the optomechanical system. Quantum phase transition is a relatively important part in the research of condensed matter physics. Since Dicke quantum phase transition was successfully observed experimentally, the problem of quantum phase transition in the optical cavity has attracted more attention. The spin-coherent-state variation method and the Holstein-Primakoff transformation are used to theoretically calculate the ground state energy functional, and the rich structure of the macroscopic multi-particle quantum state is given by adjusting the parameters. The quantum phase transition evolution equation describes the relationship between each phase and the time of generating a new phase when reaching the critical phase transition point. At the same time, the mode squeezing of multi-mode hybrid optomechanical system has also became one of the basic problems of quantum mechanical behavior in cavity quantum dynamics.</sec><sec> In this article, we explore the quantum dynamics of optomechanical devices including single-cavity and dual-cavities. We find that the system will undergo a dynamic phase transition, which is similar to the Dicke-Hepp-Lieb superradiant type phase transition, and a new dynamic critical point appears in the coupling between the momentum quadratures of the two optical fields. By manipulating the coupling parameters, we can achieve selective energy exchange between any two modes and the critical coupling point corresponds to selective energy exchange. Mode squeezing, which is easy to measure by applying the quantum uncertainty relationship, is also revealed and consistent with selective energy exchange. The study of coordinate and momentum variances gives us the revelation that the compressed orthogonal variables are the most suitable for measurement because of the small quantum noise. In fact, phononic modes can store energy in a longer duration, while photonic modes can transfer energy in a long distance. This phenomenon makes the hybrid optomechanical cavities useful in the next-generation quantum communications and quantum information processing units.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3