A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions

Author:

Han Xiao-Ying,Li Ling-Xiao,Dai Zhen-Sheng,Zheng Wu-Di,Gu Pei-Jun,Wu Ze-Qing,

Abstract

Aiming at the requirement of the on-line detailed atomic model in radiation hydrodynamic simulations, we propose a general model, multi-average ion collisional-radiative model (MAICRM), to rapidly simulate the ionization and charge state distribution of hot dense plasma under non-local thermal equilibrium (NLTE) conditions. In this model, an average ion is used to characterize the features of all the atomic states at one single charge state, including the average orbital occupation and the total population of the atomic states. The rate equations for the orbital occupations and the population are derived from the rate equations of the detailed configurations and separated into two sets under the two assumptions: one is the single orbital rate coefficients (including no occupation nor hole number of the relative orbital) that are only dependent on the charge state, and the other is the coupling of the excitation/de-excitation process and ionization/recombination process, which are weak. Namely, the orbital occupation of an average ion is mainly determined by the excitation/de-excitation process under a certain density and temperature; the population of the average ions is determined by the ionization/recombination process with the fixed orbital occupation. The two sets of rate equations are solved sequentially and iteratively until a set of converged orbital occupation and population values is obtained. The interplay between the occupation and the population is implicit in the excitation/de-excitation rate coefficient and ionization/recombination rate coefficient, each of which is a function of electron density and temperature as well as occupation. In this work, using the newly developed method and codes, the mean ionizations and charge state distributions of Fe, Xe and Au plasmas under different plasma conditions are calculated and in good agreement with the experimental results and DCA/SCA calculations. Meanwhile, compared with the DCA/SCA calculations, in which hundreds or thousands of detailed atomic states at each charge state are considered to obtain a converged ionization balance, MAICRM only considers one kind of ion at one single charge state, thus the computational cost of MAICRM is much reduced and lower than that of DCA/SCA. Due to its good degree of accuracy for ionization balance and its low computational cost, MAICRM is expected to be incorporated into the radiation hydrodynamic program to realize the online calculation of detailed nonequilibrium atomic models in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3