Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler

Author:

Yan Jian,Ren Zhi-Wei,Zhong Zhi-Yong,

Abstract

The spin-wave coupling device is used as a connection unit to solve the connection problem between spin-wave devices. However, the current size is too large in comparison with the nano-scale process, which is caused by the low efficiency of the spin wave within it. Therefore, we propose the spin-wave directional coupler based on Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>-CoFeB coupling which can improve the current dilemma to a certain extent. By filling the gap layer of two spin-wave waveguides (Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>) placed in parallel with CoFeB material, it is found that the dispersion relationship of the spin wave changes in the data calculation of the micromagnetic simulation software Mumax<sup>3</sup>. The existence of CoFeB makes the transmission efficiency of the spin wave between the two waveguides higher than in the case without any filling, the enhancement effect is about 4 times where coupling length is reduced from the original 2000 nm to 500 nm, which is conducive to the miniaturization and integration of the spin-wave directional coupler design. From the perspective of the entire device, further analysis indicates that owing to the high saturation magnetization of CoFeB (approximately 8 times that of Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>), the effective field in the Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>-CoFeB directional coupler is greatly enhanced, which leads the spin wave dispersion curve in the waveguide to change. At the same time, the energy of the entire system also increases several times, which is mainly caused by the increase of dipole energy and exchange energy. Then a greater contribution of dipole energy is obtained by changing the size of the device. After that, we study the relationship between the coupling length and the device size and the external magnetic field, then draw a general rule which can play a role in designing any directional couplers with similar structures. Finally, our view points are given from the different spin wave excitation frequencies, gap layer filling materials, internal roughness of the directional coupler, and spin wave lifetime by considering the problems that may occur in practical applications with the Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>-CoFeB directional coupler. In conclusion, our proposed Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>-CoFeB directional coupler structure can effectively enhance the coupling efficiency, and it can also provide a new idea for the application of the interaction between composite materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3