Brief introduction to flux pinning and vortex dynamics in high temperature superconductors

Author:

Wen Hai-Hu,

Abstract

Superconductivity is achieved through macroscopic phase coherence; the charge carriers are Cooper pairs. In absence of an external magnetic field and applied current, the behavior of these Cooper pairs can be described by a single wave function <inline-formula><tex-math id="M3">\begin{document}$ \psi = {\psi _{\rm{0}}}{e^{i\varphi }}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20201881_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20201881_M3.png"/></alternatives></inline-formula>, and the phase is uniform over the space. When applying an external field but still below a certain threshold, a screening current will be established at the surface, which prohibits the entering of magnetic field, that is so-called Meissner effect. When the external field is larger than this threshold, the magnetic flux will penetrate into the sample, forming the interface of superconducting and normal state regions. According to the sign of this interface energy, we can categorize superconductors into type-I (positive interface energy) and type-II (negative interface energy). Most superconductors found so far are type-II in nature. Due to the negative interface energy in type-II superconductors, the penetrated magnetic flux will separate into the smallest bundle, namely the quantum flux line, with a quantized flux <inline-formula><tex-math id="M4">\begin{document}${\varPhi _0} = h/2e$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20201881_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20201881_M4.png"/></alternatives></inline-formula> (<i>h</i> is the Planck constant and <i>e</i> is the charge of an electron). There are weak repulsive interactions among these vortices, thus usually they will form a lattice, called mixed state. When applying a current, a Lorentz force will exert on the flux lines (vortices) and will make them to move, this will induce energy dissipation and the appreciable feature of zero resistance of a superconductor will be lost. By introducing some defects, impurities or dislocations into the system, it is possible to pin down these vortices and restore the state of zero resistance. The study concerning vortex pinning and dynamics is very important, which helps not only the understanding of fundamental physics, but also to the high power application of type-II superconductors. This paper gives a brief introduction to the vortex dynamics of type-II superconductors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference49 articles.

1. Ginzburg V L, Landau L D 1950 Zh. Eksp. Teor. Fiz. 20 1064

2. Wen H H, Zhao Z X 1996 Appl. Phys. Lett. 68 856

3. Cheng W, Lin H, Wen H H, et al. 2019 Sci. Bull. 64 81

4. Wen H H, Li S L, Zhao Z X 2000 Phys. Rev. B 72 716

5. Dew-Hughes D 1974 Philos. Mag. 30 293

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in artificial flux pinning of MOD-REBCO superconducting coated conductors;SCIENTIA SINICA Physica, Mechanica & Astronomica;2023-12-01

2. Scanning tunneling spectroscopy study on the vortex-core state in superconductors;SCIENTIA SINICA Physica, Mechanica & Astronomica;2023-12-01

3. Quantum oscillation phenomena in low-dimensional superconductors;Acta Physica Sinica;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3