Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell

Author:

Zhang Ao,Zhang Chun-Xiu,Zhang Chun-Mei,Tian Yi-Min,Yan Jun,Meng Tao, ,

Abstract

CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> is one of the most promising candidates for high-performance hybrid organic-inorganic perovskite solar cells. The CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> single crystal and polycrystalline thin film exhibit the unique features of long carrier lifetimes and diffusion lengths, however, their carrier mobilities are in fact rather modest in a range from 1 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup> to 100 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup>. Experimentally, the temperature dependence of mobility is described as T<sup>–1.3</sup> to T<sup>–1.6</sup> due to the acoustic phonon scattering. To be sure, the rotating CH<sub>3</sub>NH<inline-formula><tex-math id="Z-20210812103905">\begin{document}${}_3^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210353_Z-20210812103905.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210353_Z-20210812103905.png"/></alternatives></inline-formula> cations are disadvantageous to the carrier transport and performance for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> solar cells. The effect of the rotating CH<sub>3</sub>NH<inline-formula><tex-math id="Z-20210812103911">\begin{document}${}_3^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210353_Z-20210812103911.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210353_Z-20210812103911.png"/></alternatives></inline-formula> cations on high-performance CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> solar cells remains an open question. The Gaussian 09 software has been utilized to optimize the geometrical structures of CH<sub>3</sub>NH<sub>3</sub> dimer, trimer, tetramer, and pentamer in isolated state at the MP2 level with using the cc-PVTZ basis set. For CH<sub>3</sub>NH<sub>3</sub> polymer, the mean distance between two centroids of neighboring CH<sub>3</sub>NH<sub>3</sub> decreasing with the number of CH<sub>3</sub>NH<sub>3</sub> is slightly smaller than the lattice constant 6.28 Å of tetragonal CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, which is advantageous to structural stability and higher structural order of inorganic [PbI3]<sup>–</sup> framework. It signifies that the long range order of electrically neutral CH<sub>3</sub>NH<sub>3</sub> is easily formed for room-temperature CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. The total dipole moment linearly increases with the number of CH<sub>3</sub>NH<sub>3</sub> for CH<sub>3</sub>NH<sub>3</sub> polymer, and attains a large value 19.7 Debye for CH<sub>3</sub>NH<sub>3</sub> pentamer, which may be the origin of strong polarization in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> heterojunction. The molecular orbitals of five unpaired electrons for CH<sub>3</sub>NH<sub>3</sub> pentamer are distributed around NH<sub>3</sub>-sides of five different CH<sub>3</sub>NH<sub>3</sub> pentamers respectively, and these orbital energies are in a range from –4.4 eV to –3.2 eV. The unpaired electrons in CH<sub>3</sub>NH<sub>3</sub> polymer have an electrostatic attraction on the CH<sub>3</sub>-side of neighboring CH<sub>3</sub>NH<sub>3</sub>, which is the key cause of forming the ordered CH<sub>3</sub>NH<sub>3</sub> polymer. Hence it can be inferred that the orbital energies of unpaired electrons are getting closer when the longer range order of CH<sub>3</sub>NH<sub>3</sub> are formed in room-temperature CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> through the interfacial electron injection. The vector field map of electrostatic potential (ESP) shows that CH<sub>3</sub>NH<inline-formula><tex-math id="Z-20210812103926">\begin{document}${}_3^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210353_Z-20210812103926.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20210353_Z-20210812103926.png"/></alternatives></inline-formula> has strong electrophilic character, and the NH<sub>3</sub>-side has a stronger electrophilic character than CH<sub>3</sub>-side, however, CH<sub>3</sub>NH<sub>3</sub> monomer and polymer have weak electrophilic and nucleophilic character. Thus, the forming of CH<sub>3</sub>NH<sub>3</sub> polymer at the CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> heterojunction leads the organic and inorganic portions to be decoupled, which can effectively reduce the anharmonic phonon modes. Under an applied electric field, the unpaired electrons in CH<sub>3</sub>NH<sub>3</sub> pentamer can transfer along the C-N axis through the hopping mechanism. According to these results, we can draw three useful conclusions below. i) The electrons under an applied electric field are easily injected into the CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> material through the heterojunction, the CH<sub>3</sub>NH<sub>3</sub> polymer is easily formed, and the unpaired electrons in polymer are transferred between two neighboring CH<sub>3</sub>NH<sub>3</sub> through hopping mechanism. ii) The decoupling between organic CH<sub>3</sub>NH<sub>3</sub> and inorganic [PbI3]<sup>–</sup> framework can effectively reduce the anharmonic phonon modes, which can lead the carrier scattering decrease and the efficiency of carrier separation and transport to improve; iii) The ordered CH<sub>3</sub>NH<sub>3</sub> polymer at the CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> heterojunction can enhance the order of inorganic [PbI3]<sup>–</sup> framework. Our researches may help to further understand the origin of high power conversion efficiency (PCE) for hybrid organic-inorganic perovskite solar cells.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3