Weak resonance effects of THz wave transimission in nerve cell

Author:

Guo Liang-Hao,Wang Shao-Meng,Yang Li-Xia,Wang Kai-Cheng,Ma Jia-Lu,Zhou Jun,Gong Yu-Bin, , ,

Abstract

The size of nerve cell is comparable to the wavelength of terahertz (THz) wave. In this work, a new concept of weak resonance effect of nerve cells is proposed. The permittivity of intracellular fluid is measured experimentally by using a THz-TDS system, and the relationship between the permittivity of nerve cells and the frequency is obtained by fitting the double Debye model. The propagation characteristics of THz waves in nerve cells are studied by finite difference time domain. The results show that when the dielectric constant of nerve cell is higher than that of the external medium, THz wave can be enhanced in the nerve cell. Meanwhile, as the dielectric constant of the external medium increases, the resonance will be close to the cell membrane. And it shows the focusing property of THz waves, as a convex lens does. The weak resonance effect is related to the dielectric constant of the background medium, and increases with the cell size and frequency increasing. These results provide a new model to explain the interaction between THz wave and nerve cells, contributing to the study of the transmission mechanism of THz wave in biological nervous system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3