Author:
Liu Jian-Hua ,Tang Jun ,Shang Cheng-Long ,Zhang Wei ,Bi Yu ,Zhai Chen-Ting ,Guo Ze-Bin ,Wang Ming-Huan ,Guo Hao ,Qian Kun ,Liu Jun ,Xue Chen-Yang ,
Abstract
Based on the development of high sensitivity, low cost, high integration and miniaturization demand of the resonant micro-optical gyro(R-MOG), and in order to achieve a resonant micro-optical-mechano-electrical integrative gyro having high sensitivity, a microsphere optical resonator key sensitive element for producting a cavity with high quality value (Q value) and large diameter in the field of integrated optical micro resonator is proposed, for making a resonant micro optical gyro. Microsphere optical resonator is made by means of water-hydrogen flame melting, and the SiO2 microspherical cavity is formed under the natural cooling and contraction surface tension. Microsphere optical resonator with its diameter D ranging from 300 μm to 2200 μm is fabricated by melting method with hydrogen flame as a heat source through controlling the hydrogen flame’s area by regulating the flow of hydrogen gas. The resonator serves as the key unit of the resonant optical gyro sensitive parts, its Q value and diameter D have direct effect on the performance of the resonant angular velocity sensor. Affect parameters on the performance of the microsphere optical resonator with different diameters is tested and processed to obtain the result. The corresponding relationship among Q value, DQ product, resonant micro-optical gyro’s sensitivity and microspherical cavity diameter D is analyzed, and the reason for them is given. With the increase of microspherical cavity diameter D, the Q value and DQ product reduce after rising first, while the gyro sensitivity goes to rise and fall. Based on the microsphere optical resonator DQ product optimization research, the resonant micro-optical gyro’s key sensitive unit with best parameters is obtained. When the microspherical cavity diameter D varies from 600 to 200 μm, the gyro sensitivity can meet the condition that δΩ D is 1260 μm, the Q value of microsphere optical resonator is 7.18×107 and the corresponding optimal limited sensitivity of the resonant micro-optical gyro is almost 10°/h, and this result adequately meets the requirement of business level gyro applications. This work can serve as an experimental foundation in the research of new type resonant micro optical gyro at chip level, high accuracy and low cost, and will also provide a technical reference for further study of high integrated and high precision resonant micro optical gyro.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference20 articles.
1. Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603
2. Deng S S, Xiao Z S, Yan L, Huang A P 2012 Physics 41 0 (in Chinese) [邓思盛, 肖志松, 燕路, 黄安平 2012 物理 41 0]
3. Graydon O 2012 Nat. Photonics 6 12
4. Hotate K, Harumoto M 1997 J. Lightwave. Technol. 15 466
5. Ciminelli C, Dell’Olio F, Campanella C E, Armenise M N 2010 Adv. Opt. Photonics 2 370
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献