Optimization of microsphere’s DQ product based on resonant micro-optical gyro

Author:

Liu Jian-Hua ,Tang Jun ,Shang Cheng-Long ,Zhang Wei ,Bi Yu ,Zhai Chen-Ting ,Guo Ze-Bin ,Wang Ming-Huan ,Guo Hao ,Qian Kun ,Liu Jun ,Xue Chen-Yang ,

Abstract

Based on the development of high sensitivity, low cost, high integration and miniaturization demand of the resonant micro-optical gyro(R-MOG), and in order to achieve a resonant micro-optical-mechano-electrical integrative gyro having high sensitivity, a microsphere optical resonator key sensitive element for producting a cavity with high quality value (Q value) and large diameter in the field of integrated optical micro resonator is proposed, for making a resonant micro optical gyro. Microsphere optical resonator is made by means of water-hydrogen flame melting, and the SiO2 microspherical cavity is formed under the natural cooling and contraction surface tension. Microsphere optical resonator with its diameter D ranging from 300 μm to 2200 μm is fabricated by melting method with hydrogen flame as a heat source through controlling the hydrogen flame’s area by regulating the flow of hydrogen gas. The resonator serves as the key unit of the resonant optical gyro sensitive parts, its Q value and diameter D have direct effect on the performance of the resonant angular velocity sensor. Affect parameters on the performance of the microsphere optical resonator with different diameters is tested and processed to obtain the result. The corresponding relationship among Q value, DQ product, resonant micro-optical gyro’s sensitivity and microspherical cavity diameter D is analyzed, and the reason for them is given. With the increase of microspherical cavity diameter D, the Q value and DQ product reduce after rising first, while the gyro sensitivity goes to rise and fall. Based on the microsphere optical resonator DQ product optimization research, the resonant micro-optical gyro’s key sensitive unit with best parameters is obtained. When the microspherical cavity diameter D varies from 600 to 200 μm, the gyro sensitivity can meet the condition that δΩ D is 1260 μm, the Q value of microsphere optical resonator is 7.18×107 and the corresponding optimal limited sensitivity of the resonant micro-optical gyro is almost 10°/h, and this result adequately meets the requirement of business level gyro applications. This work can serve as an experimental foundation in the research of new type resonant micro optical gyro at chip level, high accuracy and low cost, and will also provide a technical reference for further study of high integrated and high precision resonant micro optical gyro.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3