Comprehensive evaluation method in the cooling mode of large-scale hydro-generators

Author:

Teng Qi-Zhi ,Tan Xin ,Wu Zi-Yu ,Shen Jun ,Wang Hai-Feng , , ,

Abstract

With the development of large-scale hydro-generators, large hydro-generator cooling technology is increasingly demanded. Different cooling method will not only affect the structure of hydro-generators, also it will affect the energy consumption and reliability of the generators. The commonly large-scale hydro-generator cooling method includes: air cooling, water cooling, and evaporative cooling methods. This paper analyzes the principle of the three cooling methods and describes qualitatively the advantages and disadvantages of them. The air cooling hydro-generator structure is simple, but the generator operating temperature is high; the water-cooling method has a certain superior in cooling performance, but it requires more auxiliary equipments, and has higher equipment failure rates. The evaporative cooling method is a recently developed cooling technique. It not only has a remarkable cooling effect, but also can decrease the equipment failure rates and the cost of maintenance. In order to build a comprehensive model to assess the three hydro-generator cooling methods, this paper proposes a comprehensive evaluation method based on AHP. The method includes 11 indexes of resource consumption, energy consumption and reliability to assess the influence of cooling ways. The energy saving influence of all the 11 indicators are calculated by using the AHP comprehensive evaluation. Finally, comparison between a 400 MW air cooling and an evaporative cooling hydro-generators at Lijiaxia hydropower Station are made using the proposed method. Evaluation results indicate that in terms of daily operation, the energy saving of the evaporative cooling hydro-generator can be more than 300 tons standard coal equivalent per year as compared with that of air cooling generator. In terms of maintenance, the evaporative cooling method can save more than 5000 tons of standard coal equivalent per year. The comprehensive evaluation results show that the evaporative cooling method is significantly better than the air cooling. It can be seen that the proposed evaluation method may quantitatively calculate the merits of hydro-generator caused by cooling method, which provides guidance to select and improve cooling method of hydro-generator.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference9 articles.

1. China Society for Hydropower Engineering 2012 Science and technology development report of Chinese hydropower (Beijing: China Electric Power Press) chapt. 1 (in Chinese) [中国水力发电工程学会 2012 中国水力发电科学技术发展报告(北京: 中国电力出版社)第一章]

2. Yan Y Z 2009 Yangtze River. 40 37 (in Chinese) [阎永忠. 2009 人民长江 40 37]

3. apehko H B P 1959 Acta Phys. Sin. 15 246 (in Chinese) [H. B 查林柯 1959 物理学报 15 246]

4. Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

5. Yuan D F, Liang B 2008 Large Electric Machine and Hydraulic Turbine. 2008(1) 1 (in Chinese) [袁达夫, 梁波 2008 大电机技术 2008(1) 1]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3