Author:
Chen Xue-Mei ,Zhang Jing ,Yi Xing-Wen ,Zeng Deng-Ke ,Yang He-Ming ,Qiu Kun ,
Abstract
Fiber nonlinearity of optical orthogonal frequency division multiplexed (OFDM) system restricts the capacity improvement of optical fiber transmission. In this paper, we propose a novel digital coherent superposition (DCS) scheme to improve the tolerance to fiber nonlinearity in a coherent optical orthogonal frequency division multiplexed system. In simulation, 71.53 Gbit/s orthogonal frequency division multiplexed signal per channel with Hermitian symmetry is transmitted over 400 km standard single mode fiber in a wave division multiplexed-polarization-division multiplexed-coherent optical orthogonal frequency division multiplexed system with five channels. The 4-quadrature amplitude modulation is used for symbol mapping. For the receiver, after the conventional OFDM signal processing, we conduct DCS for OFDM subcarrier pairs, which requires only conjugation and summation in the x, y polarization direction, respectively. Firstly, the channel spacing is 25 GHz, the maximum signal-to-noise ratio improvement is 9.05 dB or 6.02 dB with or without symmetric dispersion compensation compared with a conventional orthogonal frequency division multiplexed system. The optimum launch power is increased by 2 dB. Secondly, the channel spacing is changed to 50 GHz to investigate the nonlinearity tolerance at different channel spacings in the wave division multiplexed system, the maximum signal-to-noise ratio improvement is 8.75 dB or 4.9 dB with or without symmetric dispersion compensation, respectively. Theoretical and simulation analysis show that the proposed method in this paper can effectively mitigate the first-order nonlinear distortions and hence improve the tolerance of coherent optical orthogonal frequency division multiplexed system with different channel spacings to fiber nonlinear effects.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference17 articles.
1. Shieh W, Yi X W, Tang Y 2005 Electron. Lett. 43 183
2. Lowery A J, Du L, Armstrong J 2006 Proceedings of Optical Fiber Communication Anaheim, CA USA, March 5-10, 2006 PDP39
3. Jansen S L, Morita I, Schenk C W, Takeda N, Tanaka H 2008 Lightw. Technol. 26 6
4. Qian D, Huang M, Ip E, Huang Y, Shao Y, Hu J, Wang T 2011 Proceedings of Optical Fiber Communication Los Angeles, CA USA, March 6-11, 2011 PDPB5
5. Dai F, Yang B J 2005 Physics 34 450 (in Chinese) [戴峰, 杨伯君 2005 物理 34 450]