Abstract
Studies on the dynamical stereochemistry of the titled reaction are carried out by the quasi-classical trajectory (QCT) method based on a new accurate 4A potential energy surface constructed by Abrahamsson and coworkers (Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400) at a collision energy of 0.06 eV. The distribution p(r) of the angle between k-j' and the angle distribution P(r in terms of k-k'-j' correlation have been calculated. Results indicate that the rotational angular momentum vector j' of CO is preferentially aligned perpendicular to k and also oriented with respect to the k-k' plane. Three polarization-dependent differential cross sections (2/)(d00/dt), (2/)(d20/dt), and (2/)(d22+/dt) have also been calculated. The preference of backward scattering is found from the results of (2/)(d00/dt). The behavior of (2/)(d20/dt) shows that the variation trend is opposite to that of (2/)(d00/dt), which indicates that j' is preferentially polarized along the direction perpendicular to k. The value of (2/)(d22/dt) is negative for all scattering angles, indicating the marked preference of product alignment along the y-axis. Furthermore, the influences of initial rotational and vibrational excitation on the reaction are shown and discussed. It is found that the initial vibrational excitation and rotational excitation have a larger influence on the alignment distribution of j' but a weaker effect on the orientation distribution of j' in the titled reaction. The influence of the initial vibrational excitation on the three polarization-dependent differential cross sections of product CO is stronger than that of the initial rotational excitation effect.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献